
H

Stanford Heuristic Programming Project June 1979
Memo HPP-79-12

Computer Science De ertment
Report No STAN-CS-9 9-742

Search ~
.

_. :~~r -~ ~~~~~~by L

Anne Gardner
t~~~~

—

a aecUon of the

Handbook of Artificial InteHigence
edêted by

Av ron Barr and Edward A. Falgenbaum

H
COMPUTER SCIENCE DEPARTMENT

= School of Humanities and Sciences
STANFORD UNIVERSITY

~~~~~ 
~~~~~~

4> .

(S9 19 0 2 0

UNCLASSIFIED

St CURITY C L A S I C A T I O N OF T HIS PAG E (W?..n Dole EnIe,ed)

REPORT DOCUMENTATION PAGE BFFORE CO\IPLETING FORM
I. RLPORT HUMMER 2. GOVT A C C E S S I O N NO. 3. RECIP IENT S C A T A L O G NUMBER

HPP-79-12 (sTAN-cs-79-742)

• T I T L E (and Sub Sltt .) S. TYPE OF REPORT A PERIOD COVERED

(‘i;

)
~~~~~~ction of the Handbook of Artificial technical , June 1979
In te.Jigence~~ . V 

6. PERFORMING ORG. REPORT IIUMMER

_______________________________________________ 

HPP-79-12_ (sT~~-cs-79-71~2)
7. L CONT RACT OR GRANT NUMBE R(S)

i j f) Anne/Gardner .i ~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ and Edward A. Feigenb aum ) ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
9. PERFORMING O R G A N I Z A T I O N NAME AND ADDR ESS 10. PMe6~~AM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

V Department of Computer Science /
AREA 6 woR k UNIT NUMRFRS

Stanford Univers i ty
Stanford , California 9~3O5 USA

II. CONTROLLING OFFICE NAME AND ADDRESS 12. *fPo~~~-e*~ ’-~--

Defense Advanced Research Proj ects Agency / Junes~~79
Information Processing Techni ques Office ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~lLeOO Wilson Ave., Arlington , VA 22209 112

14. MONITOR ING AGENCY NAM E 6 AOORESS(ii diIi.r. ,,I 1,0,, Cont,~ liin4 Off ice) IS. SECURITY CLASS. (of this r.porl)

Mr. Phi l ip Surra, Resident Representative
Off ice of Nav al Research , Durand 165 Unclassif ied
Stanford University IS.. OECLA SS IFICATI ON/DOWNG RA DING

SCHEDULE

IS DISTRIBUTION S T A T E M E NT (of this Report)
,
..

~~~~~~~~~~~~ 

— ..- V

/

Reproduct ion in whole or in part is permitted for any pu rpose of the
U.S. Government. ~l.

1,. DI$TRIB(j — IDN STATEMENT (o f the .b,t,act ,nfer.d in Block 20. ii different fro m R.porf)

~~~~~~~~~~~~~~~~~~~~~~~~ 

I

,

lB. SUPPL EMESLtARY NOTE S ~~~~~~~~~~~
. .

~

STAN—CS—79-742, HPP—79-12 /
KEY W OR D~~(CtwvfSnrre o~, yT Vb~t Itd9 i POT..e.rT .r. J fJ.~.tt(~ 4,-èE~ck fl umb•r)

10. A B S T RA C T ((onUn.~e on reFer., aid. if nec.,.ary and Id.~uiiy b~y block number)

(see reverse side)

L DD EDITION OP ~~~OV 6 ~~~~~O~~~O~~~~~~

~~~
1 1

~1~~~~ :~ 
Enl:~~) 

:



—--

U N C L A S S I F I E D
d I r tI lY  C LA SSI F CI.TION Ol~ THIS PAGE(147.on D o ts  Enl . ro~ )

Those of us Involved in the creation of the Handbook of Artificial Intelligence , both
writers end editors, hav, attempted to make the concepts, methods, tools, end main results
of artif icial intelligence research accessible to a brood scientific and engineering audience.
Currently Al work is familiar mainly to Its practicing specialists and other interested computer
scientists. Yet the field is of growing interdisciplinary interest and practical importance.
With this book we are trying to build bridges that are easily crossed by engineers, scientists
in other fields, end our own computer science colleagues.

the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scientif ic issues , as well as detailed discussions of particular techniques
and Important Al systems. Throughout we have tried to keep in mind the reader who is not a
specialist in Al.

As tIm cost of computation continues to fall, new areas of application of computers
bocomo potentially viable. For many of these areas , there do not exist mathematical “cores ’1
to structure calculationsi use of the computer. Such areas will lnevltab~y be served by
symbolic models and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to “go public” in the manner intended by the Handbook.

Sovoral other writors hove recognized a need for more widespread knowledge of Al and
hove attempted to help fill tJ’.e vacuum. Lay reviews, in particular Margaret Boden’s V

Art ificial intelligenc, and Natural Man, have tried to explain what is important and
intoresting about Al, and how research In Al progresses through our programs. in addition ,
there are a (ow textbooks that attempt to present a more detailed view of selected areas
of Ai, for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas , present brief explanations of the important ideas and techniques, and
review the 40 or 60 most important Al systems. 

,~
_

The Handbook contains several different types of articles. Kay Al ideas and
techniquos are described in core articles (e.g. basic concepts in heuristic search, semantic
nets). Important individual Al programs (e.g. SHROLU) are described In separate articles that
Indicate among other things the designer’s goal, the techniques employed, ünd the reasons
why the program Is Important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.

Evontualiy the Handbook will contain approximately two hundred articles. We hope that
the oppeoranco of this material will stimulate Interaction and cooperation with other Al
rosoorch altos. We look forward to being advised of our inevitable errors of omission and
commission. And for a field as fast moving as A), It is important that its practitioners alert us
to Important developments, so that future editions will reflect this new material. We intend
that the Handbook of Artificia l int&llg. nc. be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Stanf ord University, with assist ance from graduate students and Al professionals at
othor institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI international, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The author of this report, which contains the section of the Handbook on Search, is
Anne Gardner. Others who contributed to or commented on earlier versions of this section ..
Include Bruce Buchanan, Low Creary, Jim Davidson, Nils Niloson, Ira Pohl, Reid Smith, Mark
Stefik, Helen Tognetti, and Dave Wilkins.

UNCLASSIFIED
SECURIT Y CLASSIFICA TION OF THIS PAGE(Wl~~n Oct. Ento,.d)

L ~~~~~~~~~~ V 



*—~ -. -~ 
~~~~~~~~~~~~

.

Search
by

Anne Gardner

a section of the

Handbook of Artifici& $ntelligence
edit ed by

Avron Barr end Edward A. Foig.nbaum

This research was supported by both the Defense Advanced Research Projects Agency
(ARPA Order No, 3423, Contract No. MDA 003-7’?-C-0322) and the National inst itutes of
Health (Contr act No. NIH RR-00785-OO). The views and conclusions of this document shou ld
not be Int erpreted as necessarily representing the official policies, •ithe r expressed or
impli ed, of the Defense Advanced Projects Agency, the National Institutes of Health , or the
Unit ed States Gov.rment.

Copyright Notice: The material herein is copyr ight protected. Permiss ion to quote or reprodue
In any form must bo obtain ed from the Editors. Such parmissio n is h.r.by granted to agencies
of the United States Goverment.

- ~~~ ~~~~~~~ V V ... __

- — ~~~~~~

~ ~~~~~

-i

Foreword

Those of us involved in the creation of the Handbook of ArtificIal inteiiigence , both
writers and editors, have attempted to make the concepts, methods, tools, arid mein results
of artificial $ntoiiigenco research accessible to a broad scientific and engineering audience.
Currently Al work is familiar mainly to its practicing specialists and other interested computer
scientists. Yet the field is of growing interdisciplinary interest and practical importance.
With this book we are trying to build bridges that are easily crossed by engineers. scientists
in other fiolds, and our own computer science colleagues.

In tho Handbook we intend to cover the breadth and depth of Al, presenting gonerai
overviews of the scientific Issues , as wail as detailed discussions of particular techniques
and important Ai systems. Throughout we have tried to keep In mind the reader who Is not a
specialist In Al.

As tho cost of computation continues to fall, new areas of application of Computers
become potentially viable. For many of these areas , there do not exist mathematical “cores ”
to structure calculational use of the computer. Such areas will inevitably be served by
symbolic models and symbolic inforoncø techniques. Yet those who understand symbolic
computation have boon speaking largely to themselves for twenty years. We feel that It is
urgent for Al to “go public” In the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al end
havo attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden’s
Artif icial intelligenc, and Natural Man, have tried to explain what Is Important and
intoresting about Ai, and how research in Al progress es through our programs. In addition,
there are a f ow textbooks that attempt to present a more detailed view of selected areas
of Al, for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas, present brief explanations of (ho important ideas and techniques, and
review the 40 or 60 most Important Al systems.

The Handbook contaIns several different types of articles. Key Al ideas and
techniques are described in core articles (e.g. basic concepts In heuristic search, semantic
nets). Important individual Al programs (e.g. SHADLU) are described In separate articlos th~itindicate among other things the designer’s goal, the techniques employed, and the reasons
why the program Is important. Overview articles discuss the problems end approaches In
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.

~~~~~~~~ J~~V! ~~~~~~~~~~~~ 0 1]! : 1 . 



Evontuaily the Handbook will contain approximately two hundred articles. We hope that
the appearance of thIs material will stimulate interaction and cooperation with other Alresearch silos. We look forward to being advised of our inevitable errors of omission and
commission. And for a field is fast moving as Al , It Is important that Its practitioners alert us
to important developments, so that futur• editions will refiect this new material. We intend
that the Handbook of ArtificIal intelligence be a living and changIng r.Ier.nc. work.

Tho articles in this edItion of the Handbook were written primarIly by graduate students
in Al at Stanf ord University, with assistance from graduate students and Al professionals at

V other Institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRi international. Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The author of this report , which contains the section of the Handbook on Search, Is
Anne Gardner. Others who contributed to or commented on earlier versions of this section
include Bruce Buchanan, Low Croary, Jim Davidson, Niis Nilsson, Ire Pohi, Reid Smith, Mark
Stefik . Helen Togn.tti, and Dave Wilkins.

Avron Barr Stanford University
Edward Felgenbaum July, 1 ~~~

- p

- 
V 

- — -  -- — 
- - V

- ~~~~~~~~~~~~~~~~~~~ ~~~~ •_V~~!_~ V V V 0  ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~V S V V  — -



Handbook of Artificial lntelhgence

Topic Outline
L

Volumes I and II

introduction

The Handbook of Artificial Intelligence
Overview of Al Research
History of Al -$ 0

An introduction to the Al Literature 
. 

-

Search

Overview
Problem Roprosentation
Search Methods for State Spaces , AND/OR Graphs, and Game Trees
Six important Search Programs

Representation of Knowledge
9

issues and Problems in Representation Theory
Survey of Representation Techniques
Sev•n Important Representation Schemes

~ VI

Al Programming Languages

Historical Ovorviow of Al Programming Languages
Comparison of Oats Structures and Control Mechanisms In Al Languag.s
LISP

Natural Language Understanding

Overview - History and Issues
Grammars
Parsing T echniques
Tex t Generation Systems
Machine Translation
Tho Early NI Systems
Six Important Natural Language Processing Systems

Speec h Understanding Systems

Overview - History and Design issues
Seven Major Speech Understand ing Projects

_ _ _ _ _ _ _ _  — T ~~~~i ~~~~~~~~~~~~~~~



—~~~~ — - - - - -- -

Applications-oriented Ai Research -- Part I 
V

Overview
TEIRESIAS - Issues in Export Systems Design
Research on Al Applications In Mathematics (MACSYMA and AM)
Miscellaneous Appiic atio ns Research

Applications-oriented Al Research -- Part 2* Medicine

Ovorviow of Medical ApplIcations Research
Six important Medical Systems

Applications-oriented Al Research -- Part 3* Chemistry

Overview of Applications in Chemistry
Applications in Chemical Anaiysis
The DENDRAL Programs
CRYSALIS
Applications In Organic Synthesis

ApplIcatIons-oriented Al Research -- Part 4* Education

V Historical Overview of Al Research in Educational Applications
Issues and Componots of intelligent CAl Systems V

Seven Important iCA i Systems

Automatic Programming

Overview - 
-

Techniques for Program Specification
Approaches to AP
Eight important AP Systems

TA. following sections of the Handlooh are all! In preparation and will appear In Me third
volume:

TheoPsøt Proving
Vision
Robotics
Informat ion Processing Psychol ogy
Learning and Inductive inferenc.
Planning and Related Problem-solving Techniques

~1

_ _ _ _ _ _ _ _ _  _ _ _ _  

_ _ _  

4 1  

- - —~~~~-V -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~~~ V-V VV ~~~ V V~~~~~~ V~~~~~
-V



V V~~~~~~~~~~~~~~~~~
V V~~~~~~

V V V V
~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~
-

Search

Table of Contents

A. Overview 1
B. Problem Representat ion 9

1. State-space Representation 9
2. Problem-reduction Representation 1 2
3. Game Trees 18

C. Seerch Methods 20
1. Biincl State-space Search 20
2. Blind AND /OR Graph Search 27
3. Heuris~tic State-space Search 31

a. Basic Concepts in Heuristic Search 31
b. A m --Optimni Search for an Optimal Solution 35
c. Relaxing tim Optirna lity Requirement 37
ci. Bidirectional Search 4 1

4. Heuristic Search of an AND /OR Graph 43
5. Game Tree Search hi

a. Minlmax Procedure 51
b. Alpha-beta Pruning 54
c. Heuristics in Game Tree Search 58

D. Example Search Programs 69
1. Logic Theorist 69
2. General Problem Solver 72
3. Gelernter ’s Geometry Theorem-proving Machine 77
4. Symbolic integration Programs 80
5. STRIPS 84

- V 6. ABSTRIPS 90

References 94

Ind ex 102

I

I.. V.~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .V— -

~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - -V - - - _V • V~~~ _~~~~_



V V

A. Overview

In Artificial intelligence the terms probl en solv ing and search refer to a large body of core
ideas that deal with deduction, inference , planning, commonsense reasoning, theorem proving,
and related processes. Applications of these general ideas are found in pr ’r~ ams for naturai
language understanding. information retrieval , automatic programming, ~c~bot:Cs , scene
analysis, game playing, expert systems , and mathematical theorem proving. h~ this chapter
we examine search as a tool for problem solving in a more limited area. Most of the 

V

exampies to be considered in detail are problems that are relatively easy to formalize. Some
typical problems are

-- finding the solution to a puzzle; 
-
. -

-- finding a proof for a theorem in logic or mathematics; 
V

-- finding the shortest path connecting a set of nonequidistant points
(the traveling-salesman problem);

V -- finding a sequence of moves that will win a game, or the best move V —

to make at a given point in a game; and

-- finding a sequence of transformations that will solve a symbolic
integration problem. •

Organlzati~n of the Chapter

This overview takes a general look at search In problem solving, indicating some
connections with topIcs considered in other chapters. The articles in the next section,
Section B, describe the problem representations that form the basis of search techniques.
The detailed examples there of state-space and problem-reduction representations will
clarify what is meant by words like “search” and “problem solving” In Al. Readers ~o whom
the subject of search Is new are encouraged to turn to those articles for more concrete
presentations of the fundamental ideas. Section B also discuss es game trees , which are a
historically and conceptually important class of representations.

Section C, Search Methods , deals with the algorithms that use these various problem
representations. Blind search algorithms , which treat the search space syntactically, are
contrasted with heur istic methods, which use information about the nature and structure of
the problem domain to limit the search, Various search algorithms are presented in full.

Finally, Section 0 reviews some well-known early programs based on search. it also
describes two programs, STRIPS and ABSTRIPS, that introduce the closely related topic of
p lanning in problem solving. This general topIC, however, is treated more fully under Planning.

Components of Search Systems

Problem-solving systems can usually be described In terms of three main components.
The first of these is a database , which describes both the current task-domain situation and

- — -~~~ 
-



- -V

2 Al Handbook

the goal. The database can consist of a variety of different kinds of data structures
includIng arrays, iist~, sets of predicate calculus express ions , property list structures , and
semantic networks. In theorem proving, for example , the current task-domain situation
consists of assertions representing axioms, lemmas , and theorems aireedy proved; the goal is
an assertion representing the theorem to be ~~~~~ in information retrieval app~icetions , the
current situation consists of a set of facts , and the goal is the query to be answered. In
robot problem solving, a current situation Is a world ~nodd consisting of statements describing
the physical surroundings of the robot , and the goal is a description that Is to Se made true
by a sequence of robot actions.

The second component of problem-solving systems is a set of operators that are used to
manipulate the database. Some examples of operators include;

-- in theorem proving, rules of inference such as modus ponens and 
V

resolution;

-- in chess, rules for moving chessmen; V

-- In symbolic integration, rules tor simplif ying the forms to be •1
integrated , such as Integration by parts or trigonometric
substitution.

Some times the set of operators consists of only a few general rules of Inference that
generate new assertions from existing ones. Usually it is more eff icient to use a large
number of very specialized operators that generate new assertions only I rem very speciti~existing ones.

The third component of a problem-solving system is a contr ol s trate gy for deciding what
to do next--in particular , what Operator to apply and where to apply It. Sometimes control Is
highly centralized , In a separate control executive that decides how problem-solving
resources should be expended. Sometimes control is diffusely spread among the operators
themselv es.

Another asoect of control strategy is its effect o’~ the contents and organization o~ the
database. In general, the object Is to achieve the goal by applying an approp riate sequence
of operators to an Initial task-domain situation. Each application of an operator modifies the
situation In some way. If several different operator sequences are worth considering, the
representation often maintains data structures showing the effects on the task situation of
each alternative sequence. Such a representation permits a control strategy that
investigates various operator sequences In parallel or that alternates attention among a
number of sequences that look relatively promising. This is the character of most of the
algorithms considered in this chapter; they assume a database containing descriptions of
multiple task-domain situations or states (see, e.g., Cl, Blind State-space Search). it may be,
however, that the description of a task-domain situation Is too large for multiple versions to
be stored explicitly; in ttji5 case, a bac ktracking control strategy may be used (see Al
Pragremn~ng Lengungee). A third possibility, available in some types of problems such as
theorem proving, exists where the application of operators can add new assertions to the
description of the task-domain situation but never can require the deletion of existing
assertions, in this case , the database can describe a single, incrementally changing task-
domain sItuation; multiple or alternative descriptions are unnecessary. (See Th~orsm
Proving.)

- ~~~~~V - ~~~~~~~ 
~~~~~~~~~ - -.

— __1 - - ~~ - - __ ____,4____ —

-~~

Search 3

Reasoning Forward and Reason rig Backward

The application of Operators to those structures in the database that describe the
task-domain situation--to produce ~ modified situat ion--is often called reaso ni n g f o r wa rd . T he
object is to bring the situation , or problem state , forward from its initial configuration to one
satisfying a goal condition. For oxam pie , en initial situation might be the placement of
chessmen on the board at the beginning of the game; the desired goal, any board
configuration that is a checkmate; and the operators , rules for the legal moves in chess.

An alternative strategy, reasoninq backward . involvos using another type of operator ,
which is applied not to a current task-doma in situat ion but to the goal. The goal statement ,
or problem statement , is converted to one or more subgoals that are (one hopes) easier to
solve and whose solutions ara suft ic. ~ nt to solve the orininal problem. These subgoals may in V

turn be reduced to sVub.slibgoals, and so on, until each of them Is either accepted to be a
trivial problem or its solution is accom plished by the solution of its subproblems. For example,
given an initial goal of integrating 1/ (cos x)2 dx , and an operator permitting 1/ (cos x) to be
rewritten as (sec x), one can work backward toward a restatement of the goal in a form
whose solution is immediate : The integral of (sac x)2 is tan x.

The former approach is said to use ‘~i’r.. ard ~~~~~~~~~ and to be da ta— dr iv en or t’~ tt~~’i- L~~.

The latter uses back ward uas onin g and is ~~~~- . e ’: :c ’d or :~p—down . The distinction between
forward and backward reasoning assumes that the current task-domain situation or state is
distinct from the goal. If one chooses to say that a current state Is the state of having a
particular goal, the distinction naturally vanishes,

Much human problem-solving behavior is observed to involve reasoning backward , a nd

many artificial intelligence programs are based on this general strategy. In addition ,
combinations of forward and backward reasoning are possible. One Important Al technique
involving forward and backward reasoning Is called ‘nea’i s-ends a r .atjs is; it involves comparing
the current goal with a current task-do main s ituation to extract a d; ffcc ’nce between them.
This difference is then used to index that (forward) operator most relevant to reducing the
difference. If this especially relevant operator cannot be immediately applied to the present
problem state , subgoals are set up to change the problem state so that the relevant
operator can be applied. After these subgoals are solved , the relevant oporator is applied
and the resulting, modified situation becomes a new starting point from which to solve f or the
original goal. (See 02, GPS; and 05, STRIPS.)

State Spaces and Problem Reduction

A problem-solving system that uses forward reasoning and whose operators each work
by producing a single new object--a new state--in the database is said to represent
problems in a state —s pace re pr~sen:a:.on (see GD.

A distinction may be drawn between two cases of backward reasoning. in one, each
application of an operator to a problem yields exactl y one new problem, whose size or
difficulty Is typically slightly less than that of the previous pro&em. Systems of this kind will
also be referred to, in this chapter , as employing state-s pace representations. Two

V instances of such representations are presented later in the chapte, . One example is the
Logic Theorist program (C31); the other Is the backward-reaso ning part of PohI’s bidirectional
searc h (Cl and C3d).

- V - V - -V - V~~~~~~~ - V -V -~~ ~~~- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ — j

4 Al Handbook

A more complex kind of backward reasoning occurs if applying an operator may divide
the problem into a set of subproblems , perhaps each significantly smaller than the original. An
example would be an operator changing the problem of integrating 2/ (x 2-1) dx into the three
subprobiems of integrating 1/ (x- 1) dx , integrating -1/(x+ 1) dx , and adding the results. A
system using this kInd of backward reasoning , distinguished by the fact that its operators
can change a single object Into a conjunction of objects , will be said to employ a problem-
reduction representation. The relationship between problem-reduction and state-space
representaticns is examined further at the end of Article B2.

There may or may not be constraints on the order in which the subproblems generated
by a problem-reduction system can be solved. Suppose , for example , that the original
problem is to integrate (f(x) + g(x)) dx. Applying the obvious operator changes it to the new
problem consisting of two integrations , f(x) dx and g(x) dx. Depending on the
representation, the new problem can be vIewed as made up of either (a) two integration
subproblems that can be solved in any order , or (b) two integration subprobiems plus the
third subproblem of summing the integrals. in the latter case , the third task cannot be done
until the first two have been completed.

Besides the state-s pace and problem-reduction representation approaches , other
variations on problem representation are possible. One occurs in connection with game-
playing problems , which differ from most other problems by virtue of the existence of
adversary moves. A game-playing problem must be represented so as to take into account
the opponent’s possible moves as well as the player ’s own. The usual representation is a
game tree (see B3), which shares many features of a problem-reduction representation.
Another variation is relevant to theorem-proving systems , many of which use fo rward
reasoning and operators (rules of inference) that act on conjunctions of objects in the
database. Although the representations discussed here assume that each operator takes
only a single object as input, it is possible to define a theorem-p rovin g rep resentation that
provides for multiple-input, single-output operators (Kowalski , 1972; see Theorem Proving).

Graph Representation

In either a state-s pace or a problem-reduct ion representation , achieving the desired
goal can be equated with finding an appropriate finite sequence of applications of available
operators. While what one Is primarily interested In--the goal situation or the sequence that
leads to it--may depend on the problem, the term search can always be understood, without
m islea ding consequences , as referring to the search for an appropriate operator sequence.

Tree structures are commonly used In implementing control strategies for the search.
In a state-space representation, a tree may be used to represent the set of problem states
produced by operator applications. in such a representation , the root node of the tree
represents the initial problem situation or state. Each of the new states that can be
produced from this initial state by the application of just one operator is represented by a
successor node of the root node. Subsequent operator applications produce successors of
these nodes, etc. Each operator application is represented by a directed arc of the tree. In
general , the states are represented by a graph rather than by a tree since there may exist
different paths from the root to any given node. Trees are an important special case ,
however, and it Is usually easier to explain their use than that of graphs. (See Bi, State-
space Representation.)

V

~~~~~~~~~~~~~~~ -iiiiJiiiIiiiIhIW*~l



-~~~~~~~~~~~~~~~~~~~~~~~~~

Search 5

In addition to these ordinary trees and graphs used for state-space representations ,
specialized ones cailed AND/OR graphs are used for problem-reduction problem-solving
methods. for problems in which tho goal can be reduced to sets of subgoals, AND/OR graphs
provide a means for keeping track of which subgoals have been attempted and of which
combinations of subgoals are sufficient to achieve the original goal (see Article 82).

The Search Space

The problem of producing a state that satisfies a goal condition can now be formulated
as the problem of searching a graph to find a node whose associated state description
satisfies the goal. SimIlarly, search based on a problem-reduction representation can be
formulated as the search of an AND/OR graph.

V It should be noted that there is a distinction between the graph to be searched and
the tree or graph that Is constructed as the search proceeds. In the latter, nodes and arcs
can be represented by explicit data structures; the only nodes included are those for which
paths from the initial state have actually been discovered. This explicit graph, which grows
as the search proceeds , will be referred to as a s~’arclr graph or search tree. 

V V
~~

in contrast , the graph to be searched is ordinarily not explicit. It may be thought of as
having one node for every state to which there exists a path from the root. It may even be
thought of , less commonly, as having one node for every state that can be described,
whether or not a path to it exists. The implicit graph will be called the state space or, if
generalized to cover non-state-space representations such as AND/OR graphs or game
trees, the search space. Clearly , many problem domains (such as theorem proving) have an
Infinite search space , and the search space In others , though finite , Is unimaginably large.
Estimates of search space size may be based on the total number of nodes (however
defined) or on other measures. In chess , for example , the number cf different complete plays
of the average-length game has boon estimated at 10120 (Shannon, 1950, 1956), although
the number of “good” games is much smaller (see Good, 1968). Even for checkers the size
of the search space nas been estimated at 1040 (Samuel , 1963).

Searching now becomes a problem of making just enough of the search space explicit
in a search graph to contain a solution of the original goal. If the search space Is a general
graph, the search graph may be either a subgraph, or a subgraph that is also a tree, or a
tree obtained by representing distinct paths to one search space node with duplicate search
graph nodes.

VI Limiting Search

The critical problem of search is the amount of time and space necessary to find a
solution. As the chess and checkers estimates suggest, exhaustive search is rarely feasible
for nontrivIal problems. Examining all sequences of n moves, for example, would require
operatIng in a search space in which the number of nodes grows exponentially with n. Such
a phenomenon Is called a combinatorial explosion.

There are several complementary approaches to reducing the number of nodes that a
search must examine. One important way is to recast the problem so as to reduce the size of

- V the search space. A dramatic , if well-known, example is the mutilated chessboard problem:

a.. -- -V_ V_ V -V _ .  - - VV ~~~~~~~~~ V V ~_~- — ~~~~~~ ~~~~~~~ ~~ ~~~~~~~~~~~~~~~ ~~ _ —- —~~ —~--~



6 Al Handbook

Suppose two diagonally opposite corner squares are removed from a
standard 8 by 8 square chessboard. Can 31 rectangular dominoes,
each the size of exactly two squares , be so placed as to cover
precisely the remaining board? (Raphael, 1976, p. 31)

If states are defined to be configurations of dominoes on the mutilated board, and an

ooerator has the effect of placing a domino, the search space for this problem is very large.
If , however , one observes that every domino placed must cover both a red square and a
black one and that the squares removed are both of one color , the answer is immediate.
Unfortunately, little theory exists about how to find good problem representations. Some of

the sorts of things such a theory would need to take into account are explored by Amarel
(1968), who gives a sequence of six representations for a single problem, each reducing the
search space size by redefining the states and operators.

A second aspect concerns search efficiency within a given search space. Several
graph- and tree-searching methods have been developed, and these play an important role in
the control of problem-solving processes. Of special Interest are those graph-searching
methods that use heuris tic know ledge from the problem domain to help focus the search. In
some types of problems , these heuristic search techniques can prevent a combinatorial
explosion of possible solutions. Heuristic search is one of the key contributions of Al to
efficient problem solving. Various theorems have been proved about the properties of search
technIques, both those that do and those that do not use heuristic Information. Briefly, it has
been shown that certain types of search methods are guaranteed to find optimal solutions
(when such exist). Some of these methods , under certain comparisons , have also been
shown to find solutions with a minimal amount of search effort. Graph- and tree-search ing
algorithms, with and without the use of heuristic information , are discussed at length In
Section C.

A third approach addresses the question: Given one representation of a search
problem, can a problem-solving system be programmed to find a better representation
automatically? The question differs from that of the first app oach to limiting search In that
here it Is the program , not the program designer , that is ask ed to find the improved
representation. One start on answering the question was made by the STRIPS program (05).
STRIPS augments its initial set of operators by discovering , generalizing, and remembering
macro-operators , composed of sequences of primitive operators, as It gains problem-solving
experience. Another idea was used in the ABSTRIPS program (06), which Implements the
idea of planning, in the sense of defining and solving problems in a search space from which
unimportant details have been omitted. The details of the solution are filled in (by smaller
searches within the more detaliod space) only after a satisfactory outline of a solution, or

plan, has been found. Planning Is a major topic itself; for further discussion, see PIanr~ng.

The Meaning of “ Heur istic ” and “ Heuristic Search”

Although the term “heuristic ” has long been a key word In Al, its meanIng has varied
both among authors and over time, in general, its usage Is illustrated by example better than
by definition, and several of the prime examples are included in the programs of Section 0.
However , a brief review of the ways “heuristic” and “heuristic search” have been used may
provide a useful warning against taking any single definition too seriously.

-V V



-V

H

Search

As an adjective , the most frequently quoted dictionary definition for “heuristic” Is
“serving to discover.” As a noun, referring to an obscure branch of philosophy, the word
meant the study of the methods and rules of discovery and invention (sea Polya , 1957, p.
112).

When the term came into use to debcr ibe Al techniques, some writers made a
distinction between methods for discovering solutions and algorithms for producing them.
Thus I~eweIl, Shaw, and Simon stated in 1957: ‘A process that may solve a given problem,
but offers no guarantees of doing so, is called a heuristic for that problem ” (Newell, Shaw, &
SImon, 1 963b, p. 114). But this meaning was not universally accepted. Minsky, for example ,
said In a 1961 paper:

The adjective “heuristic,” as used here and widely in the literature , means related
to impro vin g problem-sol ving performance ; as a noun it Is also used In regard to any
method or trick used to improve the efficiency of a problem-solving program. - . .
But imperfect methods are not necess arily heuristic , nor vice versa. Hence
“heuristic” should not be regarded as opposite to “foolproof”; this has caused
some confusion In the literature. (Minsky, 1063, p. 407n.)

These two definitions refer , though vaguely, to two different sets: devices that improve
efficiency and devIces that are not guaranteed. Feigenbaum and Feldman (1963, p. 6)
apparently limit “heuristic” to devices with both properties:

A heuristi c (heuristic rule , heuristic method) is a rule of thumb, strategy, trick ,
simplification, or any other kind of device which drastically limits search for
solutions in large problem spaces. Heuristics do not guarantee optimal solutions;
In fact , they do not guarantee any solution at all; all that can be said for a useful
heuristic is that It offers solutions which are good enough most of the time.

Even this definition, however, does not always agree with common usage , because it lacks a
historical dimension. A device originally introduced as a heuristic in Faigenbaum and
Feldman’s sense may later be shown to guarantee an optimal solution aft er all. When this
happens, the label “heuristic ” may or may not be dropped. It has not been dropped, for
example , with respect to the A~ algorithm (C3b). Alpha-beta pruning (C5b), on the other
hand , is no longer called a heuristic.

it should be noted that the definitions quoted above , ranging In time from 1957 to
1983, refer to heuristic rules , methods , and programs , but they do not use the term
“heuristic search. ” This composite term appears to have been first introduced In 1 965 In a
paper by Newell and Ernst , “The Search for Generality” (see Newell & Simon, 1072 , p. 888).
The paper presented a framework for comparing the methods used in problem-solving
programs up to that time. The basic framework , there called heuristic search, was the one
called state- space searc h in the present chapter. Blind search methods were InCluded within
the heuristic search paradigm.

• A simIlar meaning for heuristic search appears in Newell and Simon, 1972 (pp. 9 1-105).
AgaIn no cont rast Is drawn between heuristic search and blind search; rather, heuristic
sea rch is distinguished from a problem-solving method called generate—and—test. The
diff erence between the two is that the latter simply generates elements of the search
space (i.e., states) and tests each in turn until it finds one satisfying the goal condition;



~~-V—~~~

8 Al Handbook

whereas in heurIstIc search the order of generation can depend both on Information gained in
previous tests and on the characteristics of the goal. But the Newell and Simon distinction is
not a hard and fast one. By their 1976 Turing Lecture , they sea m to have collapsed the two
methods into one:

Heuristic Search. A second law of qualitative structure S or Al is that symbol
systems solve problems by generating potential solutIons and testing them, that
is, by searching. (Newell & Simon, 1976, p. 126)

In the present chapter , the meaning attached to “heuristic search” stems not from
Newell and Simon but from Nilsaon, whose 1971 book provIdes the most detailed and
Influential treatment of the subject that has yet appeared. For Nilason, the distinction
between heuristic search and blind search is the important one. Blind search corresponds
approximately to the systematic generation and testing of search space elements, but it
operates within a formalism that leaves room for additional information about the specifIc
problem domain to be Introduced, rather than excluding it by definition. If such Information,
going beyond that needed merely to formulate a class of problems as search problems , is in
fact Introduced, it may be possible to restrict search drastically. Whether or not the
restriction is foolproof, the search is then called heuristic rather than blind.

References

See Amarel (1968), Feigenbaum & Feldman (1963), Good (1968), Jackson (1974),
Kowalski (1972), Minsky (1963), Newell & Ernst (1065), Newell, Shaw, & Simon (1963b),
Newell & Simon (1972), Newell & Simon (1976), Nilsson (1971), Polys (1957), Raphael
(1976), Samuel (1963), Shannon (1950), Shannon (1956), arid Vanderbrug & Mlnker (1975).

- -~~~~~~~ • -



Search 9

B. Problem Representation

BI. Stats-space Representati on

A state-space representation of a problem uses two kinds of entIties: states , which are
data structures giving Hsnapshota l• of the condition of the problem at each stage of Its
solution, and operators , which are moans for transforming the problem from one state to
another.

A straightforward example of state-space representation is the simple, well-known
puzzle called the 8-puzzle. An 8-puzzle is a square tray containing 8 square tiles of equal
size , numbered 1 to 8. The space for the 9th tile is vacant (see Figure 1).

[ 2 J ~~ 6

~~~~J 8

L!J~~~~~

Figure 1. An 8-puzzle.

A tile may be moved by sliding it vertically or horizontally Into the empty square. The problem
Is to transfor m one tile configuration, say that of Figure 1, into another given tile
configuration, say that of Figure 2.

[1 2 3 1
1 8 4 J
f t6 5~]

Figure 2. A solution configuratIon of
the 8-puzzle,

A stat e is a particular configuration of tiles; each state might be represented by a 3 * 3matrix, sImilar to Figures 1 and 2. The operators, corresponding to possibl. moves, might be
defined with separate operators for each of tiles 1 through 8. However, a more concise
definition is made possible by viewing the empty square as the object to be moved and
stating the operators In terms of the movements of this square. in this formulation, only tour

• operators are used:

NUPU move the blank up one square),NOOWNI move the blank down one square),PLEFT N move the blank lef t one square)
RIGHT’ move the blank right one squ ars~i.

An operator may be Inapplicable in certain states , as when it would move the blank outside
th. tray of tiles.

The set of all attainable states of a problem is often called Its state space. The 8-

—~~~~
-

-

10 Al Handbook

puzzle, for example, has a stat e space of size 91/2--since there are 91 configurations of the
tiles but only halt this number can be reached from any given starting configuration, This
comes to only 181,440 possible states. For comparison, see the discussion of chess and
checkers in the Overview article.

The four operators defined for the 8-puzzle form a set of partial functions on the state
space: Each operator, if It applies to a given state at all, ret urns exactly one new state as
its result. in more complex problems, however, the operators often contain variables. If , for
a particular state and operator, the variables cati be instantiated in more than one way, then - -
each instantiation yields one new state , and the operators of the problem, If they are to be
considered as defining functions, are more accurately termed operator schemata.

The complete specification of a state-space problem has three components. One is a
set 0 of operators or operator schemata. in addition, one must define a set S of one or more
initial states and find a predicate defining a set G of goal states. A state-space problem is
then the triple (S, 0, 6). A solution to the problem is a finite sequence of applications of
operators that changes an initial state into a goal state.

A state space can be treated as a directed graph whose nodes are states and whose
arcs are operators transforming one state to another. For example, if stat e 1 Is a state to
which any of three operato s can be applied, transfor ming It to state 2, 3, or 4, then the

• correspondIng graph would be 33 in Figure 3. Nodes 2, 3, and 4 are called the successors of • -
node 1.

-

node

/tN
node node node

2 3 4

Figure 3. Directed arcs.

In graph notation, a solution to a state-apace problem Is a path from an InitIal node to a goal
node. in FIgure 4, one solution would be en a~piication of operator B twice, followed by
operator 0, to reach the indicated goal node or final state. There may be other final states
and multiple ways to reach a particular final state.

thitial state

operator A
,
/\ .

\

oP~rator B

state 1
state 2

operator B ~,/
\

\
3~arator C

state state 4
operator

final state

Figure 4. A state-space graph.

-- ——

~~

Search 1 1

A common variation on state-space problems requires finding not Just any path but one
of minimum cost between an initial node and a goal node. In this case , each arc of the graph
Is labeled with Its cost. An example is the traveling-salesman problem: Given a number of
cities to be visited and the mileage between each pair of cities, find a minimum-mileage trip
beginning and ending at city A that visits each of the other cities exactly once. An example
mileage chart and the corresponding state-space graph are shown in Figure 5. Because
different paths to the same city represent distinct partial solutions, each state Is identified

• - not just as a city name but as a list of the cities visited so far.

A B C D

-
~~~~ A — 4 6 18

B — 7 18
C — 5 - ,

D —

M~ leaga chart

A

4J 6 ia l
A Ab

7j  5j  18~ 5J
A~C A~D A~B A~D A1~B A6C

SI 1O~ 181 ~IAB~O AB6C AC~D ACI~8 AD~C AD~B

iel 61 101 4 6 4 f

AB4~DA AB6CA AC~DA AC BA AD CA AD~BA

State—space graph

Figur e 5. A trave ling—salesman problem .

The desired solution Is A-B-D-C-A, or Its reversal, with a total mileage of 25. (The two
bottom levels of the graph could be omitted, since the mileage of each tour of n cities Is
determined by the first n-i cities chosen to be visited.)

Because the state-space graph Is usually too large to represent explicltiy, the problem
of searching for a solution becomes one of generating Just enough of th. graph to contain
the desired solution path. S9arch methods are discussed In Article Cl, Blind State-space
Search , and Section C3, Heuristic State-space Search.

Ref e rences

See Nlisson (1971). ‘

~~~~~~~~~~


12 Al Handbook

82, Probiem-r.duction Representation

Often distinguished fr om the state-space representation of problems is a technique
called pr oblem-reduction representation. In the problem-reduction approach, the principal data
structure s are problem descriptions or goals. An initial problem description is given; it is
solved by a sequence of transformations that ultimately change it into a set of subproblems
whose solutions are Immediate. The transformations permitted are defined as operat ors. An
operator may change a single problem into seve ral subproblems; to solve the former , all the
subprobiems must be solved. in addition, several different operators may be applicable to a
single problem, or the same operator may be applicable in several different ways. In this
case It suffices to solve the subproblems produced by any one of the operator applications.
A problem whose solution is immediate is called a primitive problem. Thus, a problem
representation using problem reduction is defined by a triple consisting of

(a) an initial problem description ,
(b) a set of operators for transforming problems to subprobiems , and
(c) a set of primitive problem descriptions.

-
-

Reasoning proceeds backward from the initial goal.

An Example

An example that lends itself nicely to problem-reduction representation is the famous
Tower of Hanoi puzzle. in one common version there are three disks, A, B, and C, of
graduated sizes. Ther e are also three pegs, 1, 2, and 3. Initially the disks are sta cked on
peg 1, with A, the smallest , on top and C, the largest , at the bottom. The problem is to
transfer the stack to peg 3, as In Figure 1, given that (a) only one disk can be moved at a
time, and (b) no disk may be placed on top of a smaller disk.

Initia l State Goa l State

A — — — — A
B — _ — — B
C— — — — Cpeg 1 peg 2 peg 3 peg I peg 2 peg 3

Figure 1. The Tower of Hanoi puzzle.

Only one operator need be used in the solutIon: Given distinct pegs i, J, and k, the
problem of moving a stack of size n > 1 from peg I to peg k can be replaced by the three
problems:

(a) moving a stack of size n-i from i to J,
(b) moving a stack of size 1 from I to k, and
(c) moving a stack of size n-i from j to k.

The only primitive problem Is that of moving a single disk from one peg to another, provided
no smaller disk is on the receiving peg. ~f a smaller disk were present , this problem would be
unsolvable (In view of the definition of the only available operator).

Search 13

Each problem description can now be given by specifying the size n of the stack to be
moved, the number of the sending peg, and the number of the rec eiving peg. The original
problem, moving a stack of three disks from peg I to peg 3, would then be represented as
(n r 3, 1 to 3), and the transformation of the original problem to primitive problems can be
represented by a tree:

(I
fl :

1 to 3

l t o 2 I t o 3 2 t o 3

(
~) (u) (~

)
~~

(
~) (18)

nil nil n:l n:l nil n:1
lt o 3 I t o 2 3 t o Z 4 t o l 2 t o 3 lt o 3

Figure 2. Solution of the Tower ot Hanoi puzzle.

There happen to be two possible operator sequences that transform the original
problem to primitive problems: Apply the operator to node 1, then node 2, and then node 4; , -

or apply the operator to node 1, then node 4 , and then node 2. Since node 3 is a primitive
problem, it needs no further attention. Node 2 represents the subprobiem of moving the top
two disks on peg 1 to peg 2. This subprobiem is solved by expanding it to the primitive
probiems at nodes (6), (6), and (fl--which are solved by moving the smallest disk to peg 3,
moving the middle disk to peg 2, and finally putting the small disk back on top of the middle
one.

The sequence of operators to be applied should be distinguished from the sequence of
actions to be taken to achieve the goal. In the Tower of Hanoi example, the actions are the
actual movements of the disks. This sequence is given by the terminal nodes of the tree,
read left to right. Whether or not it is considered important to assemble such a sequence of
actions depends on the particular problem domain.

AND/OR Graphs

In the example above, a tree was used to display a problem-reduction solution to the
Tower of Hanoi puzzle. The tree notation must be generalized if it is to represent the full
variety of situations that may occur in problem reduction. This generalized notation for
problem reduction is called an AND/ OR graph.

According to one common formulation (Niisson, 1971) , an AND/OR graph is constructed
according to the following rules:

1. Each node represents either a single problem or a set of problems to be
solved. The graph contains a start node corresponding to the original problem.

-
• ..- ~~ - --~ •

14 Al Handbook

2. A node representing a primitive problem, called a Urininal node, has no
descendants.

3. for each possible application of an operator to problem P. transformIng it to a
set of subproblems, there Is a directed arc from P to a node representing the
resulting subproblem set. For example, Figure 3 illustrates the reduction of P
to three different subproblem sets: A, B, and C. Since P can be solved if any
one of sets A, B, or C can be solved. A, B, and C are called OR r.odej .

A /INC

/ \ /1\
Figure 3. An AND /OR tree.

4. Figure 3 illustrates further the composition of sets A . B, and C: A (D. E). B
consIsts of a single (unnamed) problem , and C (F, G, H). In general , for each
node representing a set of two or more subprobloms, there are directed arcs
f rem the node for the set to individual nodes for ea ch subproblem. Since a set
of subproblems can be solved only it its members can all be solved, the
subproblem nodes are called AND nodes . To distinguish them from OR nodes,
the arcs leading to AND node successors of a common parent are Joined by a
horizontal line.

6. A simplification of the graph produced by rules 3 and 4 may be made in the
special case where only one application of an operator is possible for problem
P and where this operator produces a set of more than one subproblem. As
FIgure 4 Illustrates , the interm ediate OR nods rapresenting the subprobiem set
may then be omitted:

Figure 4. An AND/OR tree with one
operator at problom P.

Another example of this construction was given In Figure 2.

In the figures above, every node represents a distinct problem or set of problems.
Since each node except the start node has just one parent , the gra phs are in fact AND/OR
trees. As a variation on FIgure 3. assume that problem A is reducible to D and E; and problem
C, to E, 0, and H. Then E may be represented either by two distInct nodes, or by a sIngle

_ _ _ _ _ — - ~~~~~--~~- —~~~~~~
-•

Search 16

node as shown In Figure 5. The choice makes a difference in the search algorithms which
are discussed late r in the chapter. For example , if node E is In turn reducible to C, the
general graph representation simply adds another directed arc to Figure 6, but the
corresponding tree becomes infinite.

/I\
~
/ \

E
/

~~\

Figure 5. An AND/OR graph.

The constructions discussed so far concern graphs depicting the entire problem search
space. To find a solution to the initial problem , one need only build enough of the graph to
demonstrate that the start node can be solved. Such a subgraph is called a solution graph or,
in the more restricted case of an AND/OR tree , a solution tree. The following rules apply:

A node Is solvable If:

(a) It is a terminal node (a primitive problem);
(b) it Is a nonterminal node whose successors are AND nodes that are

all solvable; or
(c) it is a nonterminRl node whose successors are OR nodes and at

least one of them is solvable.

Similarly, a node is unsolvable if:

(a) It is a nonterminal node that has no successors (a nonprimitive
problem to which no operator applies);

(1.,) it is a nonterminal node whose successors are AND nodes and at
least one of them is unsolvable; or

(c) it Is a nonterminal node whose successors are OR nodes and all of
them are unsolvable.

Methods of searching an AND/OR graph for such a solution are discussed in Articles C2 and
C4.

Relation between ProbIem-redi~ction and State-space Representations

Some interesting general relationships can be found between problem-reduction and
state-space representatIons. In the first place , although one representation often seems
the more natural for a given problem, it is often possible to recast the problem definition so
that It uses the other form. For example , the Tower of Hanoi puzzle can also be solved by a
state-space search using operators that move a single disk and that represent all the iegal

—--

~

•-

~

--
~~~~ ~~~~~~ - • -~~~~~~~

,“
~~

• - -
~~~~~


~u~-~;; ~~~~~~~~~~~
-

S

16 Al Handbook

moves in a given configuration. in comparison to the probiem-reduction representation, which
In fact gives an algorithm for solving the puzzle , the state-s pace representation would be a
poor one since it leaves room for searching down unnecessar ily long paths.

Second, It is possible to translate mechanically between state-space representations
and problem-reduction representations without any fundamental shift in the way a problem is
viewed. The ways of making such translations can provide helpful insight Into many search
programs in which the concepts of state-s pace and problem-reduction representation appear
to be intermixed. Several translation schemes are described below. (Some readers may
wish to skip the following material at first reading.)

Stat. space to problem reduction. Two approaches suggest themselves for
translating state-space representations to probtem- red~iction representat ions. In one, the
state-space graph is understood as an AND/OR graph containing only OR nodes. Each state
of the state-space version corresponds to the problem of getting from that state to a goal
state ; end a goal state of the state space becomes the primitive problem of getting from
that goal state to Itself. In other words , data structures representing states are Simply
reinterpreted as representing problem descriptions , where a problem Consists of state
information together with an Implicit goal.

Alternately , there is a slight variation of the first approach that requires redefining the
operators of the state-space representation. Each such operator , taking .state I to state j.
becomes an operator applicable to the problem of getting from state i to a goal state. its
effect is to reduce the problem to a pair of subproblems: (a) go from state I to state j (a
primitive problem), and (b) go from state j to a goal state. figure 6 illustrates this
correspondence.

State I Go from state to goa l state

StaL j / \Go from state i Go from state ,j
to State j to goa l state(a pr imit ive proble m)

(ôa) (6b)

Figure 6. (a) Part of a state-space tree; (b) the corresponding
part of an AND/OR (problem-reduction) tree.

Problem reduction to state space. The translation from a problem-reduction
representation to a state-space representation is a littie more complex, assuming that the
problem-reduction operators in fact produce AND nodes. The initial problem of the problem-
reduction representation can be understood as having two components: (a) the description
of the goal to be achieved, as discussed at the beginning of this article, and (b) the
description of an initial state of the world. These components will be denoted gQ and

~
Q,

respectively. Some examples are

-- ~~~ a theorem to be proved, and
~~

i the axioms from which to prove it;

-- ~~ a configuration of objects to be achieved, and
~Q their existing configuration.

Search 17

Each state ~ of the corresponding state-space representation is a pair consisting of a stack
of goals (gi, ... , gO) to be achieved and a current state s of the world. Thus, the initial state
~~ Q of the state-space representation Is

~Q ((gO), sO). A final state is one In which the
stack oçgoals to be achieved has been emptied.

For each problem-reduction operator , mapping a problem or goal ~ to a set of subgoals
{gm gn), the state-space representation has a corresponding operator mapping state Si ,
wher e SI • ((gi , .. ., gO), s), to a state $2 in which (gm, ... , gn) have been added to ti~ top
of the goal-stack (In the order in which they should be carried out, If relevant), and the - ate
of the world ~ Is unchanged; that is , S2 = ((gm, ... , gn, gi gO), s).

The state-space representation also needs a second type of operator , which becomes
applicable whenever the goal on top of the stack represents a primitive problem. its function
is to remove that primitive problem from the stack and, at the same time , to change the state
s to reflect its solution. In the Tower of Hanoi puzzle , for example, the new state would
reflect the changed position of a single disk. In a theorem-proving problem, the new state
would differ from the old one by the addition of one formula to those that had been given as -s

axioms or established from having solved previous subprobleins. A representation of this
type is used explicitly in Fikes and Nilsson ’s STRIPS program, descrIbed in Article 05.

References

See Jackson (1974), and Nilsson (1971).

__ - ~~ ~~~~~~~~~ ~~~~

S

18 Al Handbook

83. Game Trees

Most games played by computer programs , including checkers , chess, go , and tic-tac-
too , have several basic features in common. There are two players who alternate in making
moves. At each turn, the rules define both what moves are legal and the effect that each
possible move will have; there is no element of chance. In contrast to card games in which
the players ’ hands are hidden, each player has complete information about his opponent’s
position, including the choices open to him and the moves he has made. The game begins
from a specified state , often a configuration of mon on a board. it ends in a win for one
player and a loss for the other , or possibly In a draw.

A complete game tree is a representation of all possible plays of such a game. The root
node Is the initial state , in which it is the first player ’s turn to move. Its successors are the
states he can reach in one move; their successors are the states result ing from the other
player ’s possible replies; and so on. Terminal states are those representing a win, loss, or ‘

draw. Each path from the root node to a terminal node gives a different complete pi”y of the
game.

An important difference between a game tree and a state-space tree (Article Bi) is
that the game tree represents moves of two opposing pl aye r s , say A and B. An AND/OR tree p

(Article B2). however , is sufficient to reflect this opposition. The game tree is ordinarily
drawn to represent only one player ’s point of view. In a game tree drawn from A’ s
standpoint , A’ s possible moves from a given position are represented by OR nodes since they
are alternatives under his own control. The moves that B might make in return are AND
nodes , since they represent sets of moves to which A must be able to respond. Because the
players take turns , OR nodes and AND nodes appear at alternate levels of the tree. In the
language of AND/OR graphs , the tree displays the search space for the problem of showing
that A can win. A node representing a win for A corresponds to a primitive problem; a node
representing a win for B or a draw , to an unsolvable problem. Unlike the usual AND /OR graph
terminology, both of those kinds of nodes will be called terminal fa deS.

As an example , Figure 1 shows a portion of the game tre~3 for t ic-tac-toe . The players
are X and 0, X has the first move , and the treo is drawn from X’ s standpoint. Positions are
considered Identical it one can be obtained from the other by rotation or reflection of the
grid. The tree could also be drawn from 0’s standpoint , oven though X has the first move, in
this case , the AND nodes would become OR nodes, and vice versa , and the labels “win” and
“lose” would be reversed. An alternate formulation of game trees, not explicitly
distInguishing between AND and OR nodes, is given in Article C5o, Minimax.

Methods of searching a game tree for a winning strategy are discussed in Section CS.
As with search In other domains , the source of difficu lty in challenging games is the
unimaginably large search space. A complete game tree for checkers , f o r Instance , which is
harder than tic-tac-toe but far simpler than chess or go , has been estimated as having about
10 40 nonterminai nodes (Samuel , 1963). If one assumed that these nodes could be
generated at the rate of 3 billion per second, generation of the whole tree would still require
around 1021 centuriest

S

Search io

X*e ***
Xa*see *5* *5*

/N
0

X
5

XI* *~~*XX *
5*5 *5*

~~~~~~ .!. .1.

... *00 ...L

I I I
x0O ...
*X’
X*~~~~~~~~~~

Ox*Xe *

~~ 
,1

OX*
X*X
(win)

Figure 1. A game tree for Tic-tac-to..

Ref .r.nc.s

See Nilason (1971), and Samuel (1963).

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
—~~~~~~ —-- —- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

____5_,~— ~- 
—

~~ 
.- -

~ ~M-~ - .~ ~~~~~ ~-



20 Al l4andbook

C. Search Methods

Cl, Blind Stat e-space Search

As discussed in Article BI, a problem in the state-Space search paradigm is defined by
a triple (8, 0, G), where

S is a set of one or more initial states ,
0 is a set of operators on states , and
G is a set of goal states.

The state space Is commonly identified with a directed graph in which each node Is a state
and each arc represents the application of an operator transforming a state to a successor
state. A solution Is a path from a start state to a goal state. Goal states may be defined
eIther explicitly or as the set of states satisfying a given predicate.

The search for a solution is conducted by making just enough of the state-space graph
explicit to contain a solution path. If the order in which potential solution paths are
considered is arbitrary, using no domain-specific information to judge where the solution is
lskr ’iy to lie, the search is celled blind searc h. Although blind search Is impracticable for
nontrivial problems, because of the large proportion of the state space it may explore, it
provides a useful foundation for the understanding of heuristic search techniques, discussed in
Section C3.

Several blind-search methods are described below; they differ from one another mainly
in the order In which nodes are axamined. in each case , it is assumed that a procedure
exists for finding all the succ essors of a given node--that is, all the stat es that can be
reached from the current state by a single operator application. Such a procedure is said to
expand the given node.

The first three algorithms also make two other assumptions:

(a) The state-space graph is a tree. The implication is that there Is only one
start state (the root) and that the path from the start node to any other
node Is unique. Modifications to the search methods needed for a general
directed graph are noted in Nilsson (1971) and in Article C3e, Basic
Concepts In Heuristic Search.

(b) Whenever a node Is expanded, creating a node for .each of its successors ,
the successor nodes contaIn pointers back to the parent node. When a goal
node Is finally generated, this feature makes it possible to trace the solution
path.

Breadth-first Search

The breadth-first method expands nodes in order of their proximity to the start node,
measured by the n umber of arcs between them. In other words, It considers every possible
operator sequence of length n before any sequence of length nit. Thus, although the
search may be an extremely long one, it is guaranteed eventually to find the shortest
possible solution sequence if any solution exists.



Search 21

Breadth-first search Is described by the following algorithm:

(1) Put the start node on a list , called OPEN, of unexpanded nodes. if the
start node is a goal node, the solution has been found.

(2) if OPEN is empty, no solutIon exists.
(3) Remove the first node, n, from OPEN and place It in a list , called CLOSED ,

of expanded nodes.
(4) Expand node n. If it has no successors , go to (2).
(5) Place all successors of node n at the end of the OPEN list.
(6) If any of the successors of node n is a goal node, a solution has been

found. Otherwise, 90 to (2).

As an example of breadth-first search , consider a world consisting of a table and three
toy blocks, The Initial state of the world is that blocks 2 and 3 are on the table, and block 1
is on top of block 2 (see Figure 1). We wish to reach a goal state in which the three blocks
are stacked with block 1 on top, block 2 in the middle, and block 3 on the bottom.

In~t ia~ state Goa ’ state

I l lrn
— 

[ 2 1 3 1  W
Figure 1. An example problem for breadth-first sear ch.

The only operator Is MOVE X to Y, which moves object X onto another object, Y. As
preconditions to applying the operator , it is required (a) that X, the object to be moved, be a
block with nothing on top of it, and (b) that if V is a block, there must be nothing on V.
Finally, the operator is not to be used to generate the same state more than once. (This last
conditIon can be checked from the lists of expanded and unexpanded nodes.)

Figure 2 shows the search tree generated by the breadth-first algorithm. The nodes
are states SO through SlO; node SI, for example , corresponds to the successor state of SO
reached by “MOVE block 1 to the table.” The nodes are generated and expanded In the
order given by their state numbers, I. e., SO, SI, S2, ... , SlO. When the algorithm terminates ,
finding 810 to be the goal state , the list of expanded nodes contains SO through S5, and the
OPEN list still contains S6 through SlO.



- -~~~~~~~~~~~~~~~~~

22 Al Handbook

SO: I
2 3

S4: ’Z S5: ’ 2 S6: ’ 

S2; ’ 1 S3)3

S9:
1
3 S18:

h I

Figure 2. The search tree for Figure 1.

UnIform-cost Search

The breadth-first algorithm can be generalized slightly to solve the problem of finding- 

- 
the cheapest path from the start state to a goal state. A nonnegative cost is associated
with every arc Joining two nodes; the cost of a solution path is then the sum of the arc costs
along the path. The generalized algorithm is called a unifarm-cost search. If a l l arcs have
equal cost, the algorithm reduces to breadth-first search. The need for assigning costs to
the arcs Is Illustrated by the traveling-salesman problem, described in Article BL where the
different distances between cities correspond to the arc costs and the problem Is to
minimize the total distance traveled,

In the uniform-cost algorithm given below, the cost of the arc from node I to node J isdenoted by c(I j). The cost of a path from the start node to any node I Is denoted g(I).

(1) Put the start node, s, on a list called OPEN of unexpanded nodes. If the
start node is a goal node, a solution has been found. Otherwise, set
g(s) 0.

(2) If OPEN Is empty, no solution exists.
(3) Select from OPEN a node I such that g(i) is minimum. If several nodes

qualify, choose node I to be a goal node If there Is ones otherwise, choose
among them arbitrarily. Move node I from OPEN to a list, CLOSED, of
expanded nodes.

(4) if node I Is a goal node, the solution has been found.
t 5) Expand node I. If It has no successors , go to (2).
(6) For each successor node j of node I, compute g(J) ~ g(i) + c(i ,j) and place

all the successor nodes j in OPEN.
(7) Go to (2).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~ ~~~~



Search 23

Dspth -first Search

Depth-first search Is characterized by the expansion of the most recently generated,
or deepest , node first. Formally, the dept h of a node in a tree is defined as follows:

The depth of the start node is 0.
The depth of any other node is one more than the depth of its predec essor.

As a consequence of expanding the deepest node first , the search follows a single path
through the state space downward from the start node; only if it reaches a state that has no
successors does it consider an alternate path. Alternate paths systematically vary those
previously tried, changing only the last n steps while keeping n as small as possible.

In many problems , of course , the state-s pace tree may be of infinite depth, or at least
may be deeper than some known upper bound on the length of an acceptable solution
sequence. To prevent consideration of paths that are too long, a maximum Is often placed on •

the depth of nodes to be expanded, and any node at that depth is treated as if it had no . 

Isuccessors. It should be noted that , even if such a dept/n bound Is used, the solution path
found Is not necessarily the shortest one. ~ -

The following algorithm describes depth-first search with a depth bound: . I

(1) Put the start node on a list. OPEN, of unexpanded nodes. If it is a
goal node, a solution has been found.

(2) If OPEN Is empty, no solution exists.
(3) Move the first node, n, on OPEN to a list CLOSED of expanded

nodes.
(4) if the depth of node n is equal to the maximum depth, go to (2).
(5) Expand node n. If it has no successors , go to (2).
(6) Place all successors of node n at the beginning of OPEN.
(7) If any of the successors of node n is a goal node, a solution has

been found. Otherwise go to (2).

As an example, consider the following simple problem: A pawn is required to move
through the matrix in Figure 3 from top to bottom. The pawn may enter the matrix anywhere
in the top row. From a square contaIning 0, the pawn must move downward if the square
below contains 0; otherwIse, it must move horizontally. From a square containing 1, no
further moves are possible. The goal is to reach a square containing zero In the bottom row.
A depth bound of 6 Is assumed.

1 2 3 4

1 1 8 ° I~ 1
2 8 0 1L~]3 0 1 0  a
4 1 0 0 0

Figure 3. An example problem for depth-first search.

-~ -p. ~---——~~ - - -



-

24 Al Handbook

The search tree generated by the depth-first algorithm is shown in Figure 4. At node
SO, the pawn has not yet entered the grid. At the other nodes, Its position is given as a (row
number , column number) pair. The numbering of nodes gives the order In which they are
moved out of the OPEN list of unexpended nodes, When the algorithm terminates , the OPEN
list contains 817 (a goal node) and 818; all other nodes are on the expanded list. The
solution found, which is one move longer than the minimum, calls for the pawn to enter at
(1,3), move one square right, and then go straight down to (4.4). Had no depth bound been
used, the tree would have been one level deeper since node S12 has a successor , (4,1).
Since the algorithm treats the state space as a tree , not a general graph, It does not
dIscover that the distinct nodes 82 and S9 in fact represent the same state. Consequently,
the search downward from SO duplicates the work already done from $2.

SI SI sA 518

( 1 , 1) ( 1 2) (1 ,3) (1 ,4)

/ \
S3 S9 514

(2 ,2) (1 2) (1 4)

S(” ~7 S1O 115
(2  1) (2 ,3) (2 ,2) (2,4)I / \i

511 513 ~16
(3~1) (2 1) (2 ,3) (3 4)

A6 S 2  S i
(4 , 1) (3 , 1) (4 , 4)

Figure 4. The search tree for Figure 3.

BidirectIonal Search

Each of the algorithms giver, above uses forw ard reaso ning, working from the start node
of a state-space tree towards a goal node and using operators that each map a node I to a
successor node J. in some cases , the search could equally well use backward reasoning,
moving f rom the goal state to the start state. An example of this is the 8-puzzle, in which

(a) the goal state can be fully described in advance , end
(b) It is easy to define inverse operators--each applicable operator mappIng

node J to a predecessor node I.

Since backward search through a tree is trivial, it is assumed that node j can have more than
one predecessor--that Is, several Inverse operators may apply at node J. For example, in
the pawn maze problem, Figure 4, posItion (1,2) (at nodes S2 and 89] would have both nodes
SO and S8 as pred.cessora.

Forward and backward reasoning can be combined into a technique called bidirectional - . 
- 

~~~~~~~~~~~~~~~~~~~~~~~ —-. . - --. ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ :~~‘ 

—



—

Search 25

sear ch . The Idea Is to replace a single search graph, which Is likely to grow exponentially, by
two smaller graphs: one starting from the initial state and one starting from the goal. The
search terminates (roughly) when the two graphs Intersect.

A bidirectional version of the uniform-cost algorithm, guaranteed to find the shortest
solution path through a general state-space graph, is due to PohI (1969, 1971). Empirical
data for randomly gen erated graph s showed that PohI’ s algorithm expanded only about one-
fourth as many nodes as unidirectional search.

An algor(thm to~ blind bIdiroct~ona~ search is given in detail below. A related algorithm
for heuristic bIdirectional search is discussed in Article C3d.

The following notation is used in the algorithm:

The start node Is a; the goal or terminal node, t.

S-OPEN and S-CLOSED are lists of unexpanded and expanded nodes,
respectively, generated from the start node.

T-OPEN and T-CLOSED are lists of unexpanded and expanded nodes,
respectively, generated from tho terminal node.

The cost associated with the ar c from node n to node x is denoted c(n,x).

For a node x generated from the start node, gs(x) measures the shortest
path found so tar from s to x.

For a node x generated from the terminal node, gt(x) measures the shortest
path found so far from x to t. -

The algorithm Is as follows: -

(1) Put s in S-CLOSED , with gs(s) = 0. Expand node s, creating a node for each
of its successors. For each successor node x , place x on S-OPEN, attach a
pointer back to s, and set gs(x) to c(s ,x). Correspondingly, put t in T-
CLOSED, with gt(t) s 0. Expand node t. creating a node for each f its
predecessors. For each predecessor node x, place x on T-OPEN, attach a
pointer forward to t, and set gt(x) • c(x ,t).

(2) DecIde whether to go forward or backward. If forward, go to (3); If
backward , to (4). (One way to implement this step is to alternate between
forward and bockward moves. Another way, which Pohi found to give better
performance , Is to move backward If T-OPEN contains fewer nodes than S-

— OPEN; otherwise , forward. It is assumed that a solution path does exist , so
the chosen list will be nonempty.)

(3) Select from S-OPEN a node n at whicn gs(n) is minimum. Move n to S-
CLOSED. if n is also In T-CLOSED, go to (6). Otherwise, for each successor
x o f n :
(a) If x is on neither S-OPEN nor S-CLOSE D, then add it to S-OPEN.

Attac h a pointer back to n and the path cost gs(x) • gs(n) • c(n,x).

~~~~~~- ___ ______ __J_ ___a_ _.__ _ -S-—-— - —---S--- — - - a,


26 Al Handbook

(b) If x was already on S-OPEN, a shorter path to x may have Just been
found. Compare the previous path cost , gs(x), with the new cost
gs(n) • c(n,x). If the letter is smaller , set gs(x) to the new path
cost and point x back to n instead of its predecessor on the longer
path.

(a) If x was already on S-CLOSED, do nothing; although a new path to x
has been found, Its cost must be at least as great as the cost of the
path already known. (For further consideration of this point, see
Article C3b.)

Hckurn to (2). -

(4) Select from T-OPEN a node n at which gt(n) is minimum. Move n to 1-CLOSED.
If n Is also In S-CLOSED, go to (6). Otherwise, for each predecessor x of fl:
(a) If x Is on neither T-OPEN nor T-CLOSED, then add It to T-OPEN.

Attach a pointer forward to n and the path cost
gt(x) • gt(n) • c(x ,n).

(b) If x was already on T-OPEN and a shorter path from x to t has Just
been found , reduce the stored value of gt(x) , and point x forward to ,.

-
n (Instead of to its successor on the longer path).

(cI
I It x was already on T-CLOSED, do nothing.

Return to (2).

(6) Consider the set of nodes that are in both S-CLOSED and either T-CLOSED or
1-OPEN. Select from this set a node n for which gs(n) • gt(n) is minimum; end
exit with the solution path obtained by tracing the path from n back to a and
forward to t .

References

See Nileson (1971), PohI (1969), and PchI (1971).

~~~~~~~~~~~~~~~~~~~~~



Search 27

C2. Blind AND/OR Graph Search

A problem to be solved using AND/OR-graph search can be defined by specifying a
start node (representing an initial goal or problem description), a set of terminal nodes
(descriptions of primitive problems), and a set of operators for reducing goals to subgoals.
The rules for constructing an AND/OR graph, together with the use of such graphs for
problem-reduction representation, were discussed in Article 82. To recapitulate briefly, each
possible applicatIon of an operator at a node n (see Figure 1) is represented by a directed
arc from node n to a successor node; these successor nodes are called OR nodes, since only
Qj~ of the operator applications will ever be needed to solve the problem that node n
represents. Each OR node successor of node n represents a set of subprobiems. If the set
of subproblems represented by an OR node m has more than one element, then there are
directed arcs from m to nodes representing the individual elements of the set. These . -

successors are called AND nodes, because all of the elements of the set must be solved In
order to solve the subproblem set represented by node m. To distinguish AND nodes visually
from OR nodes, the arcs In the graph from m to its AND successors are joined by a horizontal
line.

/Nm ... OR nodes

/~N AND nodes

Fsgure 1. AND/OR graph notation. . -

Formally, a node or problem is said to be solved it one of the following conditions holds:

1. The node is in the set of terminal nodes (primitive problems). (In this
case , the node has no successors.)

2. The node has AND nodes as successors and all these successors are
solved.

3. The node has OR nodes as successors and any one of these
successors is solved.

A solution to the original problem is given by a subgraph of the AND/OR graph sufficient to
Show that the start node is solved, in Figure 2, for example, assuming that nodes 6, 6, 8, 9,
10, and 11 are all terminal, there are three possible solution subgraphs: (1, 2, 4,8, 9), (1,
3,6,6,7, 10), and (1,3,6,6,?, 11). 

~~~- ~~~~~- ~~~~~~~~~ — - ------ ---- - -- . --,. - . -— .- 
~~~~~~~



28 Al Handbook

I /i\
/ \  / \

8 9 10 11

Figure 2. An AND/OR graph.

A node is said to be unsolvable if one of the following conditions Is true:

1. The node has no successors and is not in the set of terminal nodes.
That is, it is a nonprimitive problem to which no operator can be
applied.

2. The node has AND nodes as successors and one or more of these
successors is unsolvable.

3. The node has OR nodes as successors and all of these succesors are
unsolvable.

Again in Figure 2, node 1 would be unsolvable ~f all nodes in any of the following sets were
unsolvable: (8, 6), (8, 6), (8, 10, 11), (9, 6), (9, 6), (9. 10, 11 ).

Two algorithms for the blind search of an AND/OR tree (breadth-f4 rst and depth-first)
are given at the end of this article. They have several features in common with blind stSte-
space search algorithms (Article Cl): The operation of expandin g a node Is again present ,
and again the algorithms differ mainly in the order in which nodes are considered for
expansion. It should be noted that the expansion of a node may differ slightly from the case
of state-space search. in Figure 2, for example, two operators apply at node 1: One
reduces it to a single equivalent problem (node 2) and the other to a set (node 3) of three
aubprob)ems (nodes 5, 6, and 7). In this case, nodes 2. 3, 5, 6, and 7 would all be generated
In expending node 1, and each new node would be given a pointer to Its immediate
predecessor, but only nodes 2, 5. 6, and 7 would be pIeced on the list of unexpanded nodes.

In contrast to the state-space search algorithms , most of which use forward reasoning,
the search algorIthms below reason backward from the inItial goal. The algorithms described
here make two Important simplifying assumptions: (a) The search space is an AND/OR tree
end not a general graph, and (b) when a problem is transformed to a set of subproblems, the
subprobiems may be solved In any order. The f irst assumption Implies that identIcal
subproblems may arise at different nodes of the search tree and will need to be solved anew
whenever one of them Is encountered. Modifications needed for searching a general AND/OR
graph are discussed In Nilsson (1971). A way of eliminating the second assumption, that all
subproblems are independent , is discussed in Article C4, Heuristic Search of an AND/OR
Graph. 



_ _ _ _ _  — - -

Search 29

Breadth-f irat Search of an AND/OR Tree

The following algorithm describes the breadth-first search of an AND/OR tree. If a
solution tree exists , this algorithm finds a solution tree of minimum depth, provided that
intermediate OR nodes are ignored in calculating the depth of the tree. The start node is
assumed not to be a terminal node.

(1) Put the start node on a list , OPEN, of unexpanded nodes.
(2) Remove the first node, n, from OPEN.
(3) Expand node n--generating all its immediate successors and, for each

successor m, if m represents a set of more than one subproblem, generating
successors of m corresponding to the Individual subproblems. Attach , to
each newly generated node , a pointer back to its immedIate predecessor.
Place all the new nodes that do not yet have descendants at the end of
OPEN.

(4) If no successors were generated in (3), then

~a) Label node n unsolvable.
(b) If the unsolvability of n makes any of its ancestors unsolvable, label --1

these ancestors unsolvable.
(c) If the start node is labeled unsolvable , exit with failure. F

(d) Remove from OPEN any nodes with an unsolvable ancestor.
(5) Otherwise , if any terminal nodes were generated in (3), then

(a) Label these term~naI nodes solved. ‘ - 

-

(b) If the solution of those terminal nodes makes any of their ancestors
solved, label these ancestors solved.

(c) If the start node is labeled solved, exit with success.
(d) Remove from OPEN any nodes that are labeled solved or that have a

solved ancestor.
(6) Go to step 2.

Depth-first Search of an AND /OR Tree

A bounded depth-first search can be obtained by changing only step 3 of the breadth-
first algorithm. The revised step 3 is as follows:

(3’) If the depth of n is less than the depth bound , then: Expand node n, generating
all Its immediate successors and, for each successor m, it m represents a
set of more than one subproblem , generating successors of m corresponding
to the Individual subproblems. Attach , to each newly generated node, a
pointer back to its Immediate predecessor. Place all the new nodes that do
not yet have descendants at the beginning of OPEN.

The depth-first search will find a solution tree, provided one exists within the depth bound.
As wIth breadth-first search, the notion of depth is more meaningful If Intermediate OR nodes
are not counted. For this purpose one might add the following to the end of step 3’:

For each node x added to OPEN, set the depth of x to be the depth
of node n, pIus 1.



SO Al Handbook

Given that the start node h~s depth 0, the depth of any node x will then be the length of theoperator sequenc. that must be applied to reach node x from th. start nods.

Rsfsr.n c..

S.. Nllsso n (1071).

‘I

a ’.

____ 

I
A. ~~ .

________ - ~~~~~~~ --.~~~~~~ ~~ - - -



-

- 

Search 31

C3. HeurIstic State-space Search

C3a. Basic Concepts in Heuristic Search

In the blind search of a state -space (Art icle Cl) or an AND/OR graph (Article C2), the
number of nodes expanded before reaching a solution is likely to be prohibitively large.
Because the order of expanding the nodes is purely arbitr ary and does not use any
properties of the problem being solved , one usually runs out of space or time (or both) in any
but the simplest problems. This result is a manifestation of the combinotor ~al explosion.

information about the particular problem domain can often be brought to bear to help
reduce the search. In this section , it is assumed that the definitions of initial states ,
operators , and goal states all are f ixed , thus determining a search space; the question, then ,
is how to search the given space efficient ly. The techniques for doing so usually require
additional Information about the properties of the specific problem domain beyond that which
Is built into the state and operator definitions. Information of this sort will be called he urz s t : c
information, and a search method using it (whether or not the method is foolproof) wilt be
celled a heuris t ic search method (Nilsson, 1971).

The Importance of Heuristic Search Theory

Heuristic search methods were employed by nearly all early problem-solving programs.
Most of these programs , though, were written to solve problems from a single domain, and the . 1
domain-specific information they usee was closely intertwined with the techniques for using
it. Thus the heuristic techniques themselves were not easily accessible for study and
adaptation to new problems , and there was some likelihood that substantiaily similar
techniques would have to be reinvented repeatedly. Consequently. an Interest arose in
developing generalized heuristic search algorithms , whose properties could be studied
independently of the particular programs that might use them. (See Newell & Ernst , 1 965;
Feigenbaum, 1969; Sandewali , 1971.) This task , in turn , required a way of describing
problems that generalized across many j if icre nt domains, Such generalized problem
formulations have been discussed in Section 8. Problem Representation , in an approach
generally lollowinq Nilsson (1971) . Given a ger. alized problem representation , the most
basic heuristic search techniques can be studied as variations on blind search methods for
the same type of problem representation.

The current state of heuristIc sear .h theory has been diversely Judged. One of the
best known students of the subject has rema 1’ed, “The problem of efficiently searching a
graph has essentially been solved and thus no iOn~ler occupies Al researchers ” (Nilsson,
1974). Other work makes it clear , however , that the theory is far from complete (e.g.,
Gaschnig, 1977; Simon & Kadane , 1075). Its kinship with co~ piexity theory now tends to be
emphasized (see Pohi, 1977).

Ways of UsIng Heuristic Information

The points at wti ch heuristic information car be applIed in a search include

(a) deciding which node to expand next , instead of doing the expansions in a
strictly breadth-first or depth-first order;

- -

~

-- ~~~~~- - ~~~~ — —  --- —-- - -



32 Al Handbook

(b) In the course of expanding a node, decIding which successor or
successors to generate--inste ad of blindly generating all possible
successors at one time; and 

- 
-

(c) deciding that certaIn nodes should be discarded, or pruned , from the
search tree.

A state-space search algorithm is presented below that uses heuristic Information only
at the first of these points , deciding which node to expand next , on the assumption that
nodes are to be expanded fully or not at all. The general idea is always to expand the node
that seems “most promising.” A search that implements this idea is called an ordered search or
best— first search. Ordered search has boon the subject of consIderable theoretical study, and
several variations on the basic algorithm below are reviewed in articles llC3b through ilC3d
(ordered state-space search) and article llC4 (ordered AND/OR graph search).

The other two uses of heuristic Information can be discussed more briol ,~ Decisions of
the second kind--determining which successors to generate--are often decisions of operator
selection, determining which operator to apply next to a given node A node to which some
but not all applicable operators have been applied is said to have been partiall y developed or
partiall y expanded . The use of heuristic InformatIon to develop nodes partially, reserving the
possibility of fuller expansion at a later point in the search , has been investigated by Michie
(1967) and by Mlchie and Ross (1970). Other applications of the idea of lImiting the
successors of a given node occur in game-playing programs (see C5c). Another important
variant of the Idea is means-ends analysis , which, Instead of deciding on an applicable
operator, chooses an operator most likely to advance the search whether or not it is
immediately applicable. The problem of making the operator applicable, if necessary , ~s
addressed secondarily. (See D2, GPS; and D5, STRIPS.)

The thIrd use of heurIstic information , for p runin g, amounts to deciding that some nodes
should never be expanded. In some cases, it can be definitely determined that a node is not
part of a solution, and the node may then be safely discarded , or pruned , from the search
tree. In other cases pruning may be desirable even though the nodes pruned cannot be
guaranteed inessential to a solution. One reason, in conjunction with a best-first search, is
simply to save the space that would be required to retain a large number of apparently
unpromising nodes on a list of candidates for possible futur e expansion. For examples, see
Doren (1067) and Harris ’s bandwidth search (article lIC3c). Another reason for pruning Is as a
rest riction on a search that Is otherwise blind. For example , a breadth-first search could be
modified to choose between expansion and pruning for each node it considers. Th~s pruning
to control the search is also very important for problems in which all solutions, rather than
Just a single solution, must be found; for finding all solutions implies an exhaustive
exploration of all unpruned parts of the search space. An example of a search for all
solutions Is the DENDRAL program (see Applicetions.Dendral).

Ordered State-s pace Search

An ordered or best- first search , as men tioned above , is one that always selects the most
promising node as the next node to expand. The choice Is ordinarily assumed to be global,

- —~~--~~ 
-
~

-.
~~

.--
~
--.



.— — — - -  — i - I
-- - ,

Ii
Search 33

that Is , to operate on the set of all nodes generated but not yet expanded. A local choice
would also be possible, howeve~ for example , an ordered depth- fi rst sea rch would be one that
always expands the most promising successor of the node last expanded.

The promise of a node can be defined In various ways. One way, in a state-space
problem, Is to estimate its distance from a goal node; another is to assume that the solution
path Includes the node being evaluated arid estimate the length or difficulty of the ent iro
path. Along a different dimension, the evaluation may consider only certain predetermined
features of the node In question, or it may determine the relevant features by comparing the
given node with the goal. In all these cases, the measure by which the promise of a node is
estimated is called an evaluation function.

A basic algorithm for ordered state-s pace search is given by NiIsson ( 1971) -  it ie
evaluatIon function is t ;  it is defined so that the more promising a node is , the smaller is the
value of f’. The node selected for expansion Is one at which f’ Is minimum. The state space
is assumed to be a general graph.

The algorIthm Is as follows:

(1) Put the start node s on a list , called OPEN, of unexpanded nodes. Calculate
f’(s) and associate its value with node s.

(2) It OPEN is empty, exit with failure ; no solution exists.
(3) Select from OPEN a node I at which f’ is minimum. it several nodes qualify.

choose a goal node If there is one, and otherwi se choose among them
arbitrarily.

(4) Remove node I from OPEN and place it on a list, called CLOSED, of expanded
nodes.

(6) It i is a goal node, exit with success; a solution has been found.
(6) Expend node I, creating nodes for all Its successors. For every successor

node J of I:
(a) Calculate f* (j )
(b) $1 J is neither in list OPEN nor in CLOSED , then add It to OPI N. with its

f* value. Attach a pointer from j back to its predecessor I (in order
to trace back a solution path once a goal node is found).

(c) If J was already on either OPEN or CLOSED. compare the t’ value Just
calculated for J with the value previously associated with the node.
If the new value is lower , then (I) substitute it for the old value ,
(Ii) point j back to I instead of to its previously found predecessor ,
and (iii) If node J was on the CLOSED list, move it back to OPEN.

(7) Go to 2.

Step 6c is necessary for general graphs , in which a node can have more than one
predecessor. The predecessor yielding the smaller value of t’(J) Is chosen. b r  trees , In
which a node has at most one predecessor, step 6c can be ignored. Note that oven if the
search spec. is a general graph, the subgraph that Is made explicit is elweys a tree since
node J never records more than one predecessor at a time.

Breadth-first , uniform-cost , and depth-first search (Article Cl, Blind State-s pace
Search) are all special cases of the ordered search technique. For breadth-first search, we

• choose t*(l) to be the depth of node I. For uniform-cost search, f~(I) Is the cost of the path



34 Al Hand book

from the start node to node I. A depth-fIrst search (without a depth bound) can be obtained
by takIng f*(l) to be the negative of the depth of the node.

The purpose of ordered search , of course , is to reduce the number of nodes ex panded
as compared to blind-search algorithms. its elf octivenoss In doing this depends directly on
the choice of f’, which should discriminate sharply between promising and unpromising nodes.
If the discrimination is Inaccurate , however , the ordered search may miss an optimal solution
or aH solutions. I f no exact measure of promise is available, therefore , the choice of f~
Involves a trade-off between time and space on the one hand and the guarantee of an
optimal solution, or any solution, on the other.

Problem Types and the Choice of f~
The measure of a node’s promise--and consequently , the appropriateness of a

particuiar evaluation function--depends on the problem at hand. Several cases can be
• dIstInguIshed by the type of solution they require. In one, it is assumed that the state space

contains multiple soiution paths with different costs ; the problem Is to find the optimal (i.e.,
minimum cost) solution. This first case is well understood; see Article C3b on the A *
algorithm.

The second situation Is similar to the first but with an added condition: The problem is
hard enough that, If It is treated as an instance of case one, the search will probably exceed
bounds of time and space before finding a solution. The key questions for case two are
(a) how to find good (but not optimal) solutions with reasonable amounts of search effort
and (b) how to bound both the search effort and the extent to which the solution produced
Is less than optimal.

A third kind of problem Is one in which there Is no concern for the optimailty of the
solutIon; perhaps only one solution exists , or any solution is as good as any other. The
question here is how to minimize the search effort--instead of , as in case two, tryIng to
minimize some combination of search effort and so ution cost.

An example of case three comes from theorem proving, where one may well be
satisfied with the most easily found proof , however inelegant. A clear example of case two
is the traveling-salesman problem, in which finding some circuit through a set of cities is
trivial, and the dIfficulty, which Is very great , Is entirely In finding a shortest or close-to-
shortest path. Most treatments , however , do not clearly distinguish between the two cases.
A popular test problem, the 8-puzzle, can be treated as being in either class. For further
discussion of cases two and three, see Article C3c, RelaxIng the Optimality Requirement.

References

See Doran (1067), Felganbaum (1960), Gaschnig (1077), MIchie (1967), MIchie & Ross
(1970), Newell & Ernst (1965), Newell & Simon (1972), Nilsson (10 71), Nilsson (1974), Pohl
(1977), Sandewail (1071), and Simon & Kadane (1976).



I
Search 35

C3b. A* __Optimal Search for an Optimal Solution

The AR algorithm , described by Hart, Nllsson, and Raphael (1968), addresses the
problem of finding a minimal cost path Joining the start node and a goal node in a state-s pace
graph. This problem subsumes the problem of finding the path between such nodes
contalnlng the smallest number of arcs. In the latter problem, each arc (representing the
application of an operator) has cost 1; in the minimal cost path problem , the costs associated
with arcs can be aibitrary. Historically , the predecessors of A* include Dijkstra ’s algorithm
(1959) and Moore s algorithm (1959). A class of algorithms similar to A’ is used in
operations research ur.uer the r~ame branch-and-bound algorithms (see Hall, 1971; Hillier &
Lleberman, 1974; Lawler & Wood , 1966; and Reingold , Nievergelt , & Deo, 1977).

The algorithm used by A’ is an ordered state-s pace search (Article C3a). Its distinctive
feature is its definition of the evaluation function f ‘, As In the usual ordered search , the node
chosen for expansion Is always one at which f’ is minimum.

Since f’ evaluates nodes in light of the need to find a mInimal cost solution, it considers
the value of each node n as having two components: the cost of reaching n from the start
node, and the cost of reaching a goal from node n. Accordingly, f’ is defined by

f’(n) g’(n) + h’(n)

where g~ estimates the minimum cost of a path from the start node to node n, and h’
estimates the minimum cost from node n to a goal. The value f’(n) thus estimates the minImal
cost of a solution path passing through node n. The actual costs , which f ~~, gA , and hR only
estimate, are denoted by f , g, and h, respectively. It is assumed that all arc costs are
positive.

The function 0*, applied to a node n being considered for expansion , Is calculated as
the actual cost from the start node s to n along the cheapest path found so far by the
algorithm. If the state space Is a tree , then g’ gives a perfect estimate since only one path
from a to n exIsts. In a general state-space graph, g~ can err only in the direction of
overestimating the minimal cost; Its value is adjusted downward if a shorter path to n is

L found. Even in a general graph, there are certain conditions (mentioned below) under which
g’(n) can be shown to be a perfect estimate by the time node n is chosen for expansion.

The function h’ is the carrier of heuristic information and can be defined in any way
appropriate to the problem domain. For the interesting properties of the A’ algorithm to hold,
however, h’ should be nonnegative , and it should never overestimate the cost of reaching a
goal node from the node being evaluated. That is, for any such node n it should always hold
that h’(n) is less than or equal to h(n), the actual cost of an optimal path from n to a goal
node. This last condItIon is called the admissibility condition.

Adm issibility and Optim ality of A ’

it can be shown that if h’ satisfie s the admissibility condition and if , in addition, all arc
costs are positive and can be bounded from below by a positive number , then A’ Is
guaranteed to find a solution path of minimal cost It any solution path exists. This property is
celled the property of admissibilit y.

_____ - - 
- — ....~~~~~~~. ~~~~~



36 Al Handbook

Although the admissibility condition requires h’ to be a lower bound on h, It is to be
expected that the more nearly h’ approximates h, the better the algorithm will perform, If h’
were Identically equal to h, an optimal solution path would be found without ever expanding a
node off the path (assuming only ono optimal solution exists). if h’ is identically zero, A’
reduces to the blind uniform-cost algorithm (Article Cl). Two otherwise similar algorithms, say
Al and A2, can be compared with respect to their choices of the h’ function, say hi’ and
h2’. Algorithm Al Is said to be more i nformed than A2 If , whenever a node n (other than a goal
node) is evaluated,

hl’(n) > h2’(n)

On this basis an optimality result for A’ can be stated: If A and A’ ar e admissible algorithms
such that A’ Is more informed than A , then A’ never expands a node that Is not also
expanded by A. A proof (correcting the proof given in Nilsson, 1971) appears In Gelperin
( 1977) .

Optimality and Heuristic Power

The sense In which A’ yields an optimal search has to do only with the number of nodes
it expands in the course of finding a minimal-cost solution. But there are other relevant
consIderations. First , the difficulty of computing h’ also affects the total computational
effort. Second, it may be less important to find a solution whose cost Is absolutely minimum
than to find a solution of reasonable cost within a search of moderate length. In such a case b

one might prefer an h’ that evaluates nodes more accurately in most cases bu’ sometimes
overestimates the distance to a goal, thus yielding an inadmissible algorithm. (See Article
C3c.) The choice of h’ and the resulting heuristic po Wer of the algorithm depend upon a
compromise among these consIderations.

A final question one might consider is the number of node expansions , as opposed to
the number of distinct nodes expanded by A’. The two totals will be the same provided that
whenever a node n Is expanded (moved to the CLOSED list), an optImal path to n has already
been found. This condition Is always satisfied in a state-s pace tree, where g’(n) ~ g(n)
necessarily. It wilt also be satisfied in a general state-space graph If a condition celled the
conslstenc ~ assu r.p tj on holds (see Hart, NiIsson, & Raphael , 1968). The general idea of the
assumption is that a form of the triangle Inequality holds throughout the search space.
Specifically, the assumption Is that for any nodes m and n, the estimated distance hMm) from
m to a goal should always be less than or equal to the actual distance from m to n plus the
estimated remaInIng distance, h’(n), fr om n to a goal. For an h’ not satisfying the
consistency assumption on a general state-space graph, Marteili (1977) has shown that A’
Is not optimal with respect to the number of expansions and has given an algorithm that runs
more efficiently under these circumstances.

Ref srsncs s

See Dljkatra (1080), GeIp.rln (1977). Hall (1071), Hart, Nilsson, & Raphael (1968),
Hart , Nllsson, & Raphael (1972), Hillier & Lieberman (1974), Lawler & Wood (1966), MarteIll
(197?), Moore (1960), and Relngold , Nievargelt, & Deo (1977). 

.. - • -  ~~~~~- -- ~~~~~~~~
•
~~

-- -
~~~~

- - . ‘-. - — —
~~~~~~



Search 37

C3c, Relaxing the Optima l ity Requirement

The A’ algorithm (C3b) is an ordered state-space search using the evaluation function
• g’ + h’. If the appropriate conditions are met . Including most Importantly the admissih ili t ’v

condition, that the estimate h’(n) Is always less than or equal to h(n), then A’ is guaranteed
to find an optimal solution path if one ex ists. Again under suitable conditions , the
performance of A’ is optimal In comparison with other similarly defined admissible algorithms.
Still, several questions remain:

(1) One may be more concerned with minimizing search effort than with minimizing
solution cost. Is f’ • g’ + h’ an appropriate evaluation function in this case?

(2) Even if solution cost is important, the combinatorics of the problem may be
such that an admissible A’ cannot run to termination. Can speed be gaIned
at the cost of a bounded decrease in solution quality?

(3) It may be herd to find a good heuristic function h’ that satisfies the
admissIbility condition; with a poor but admissible heuristic function, A’
deteriorates into blind search. How is the search affected by an inadmissible
heuristic function?

Minimizing Search Eff ort *1

An approach to the first question can be stated as follows, The reason for IncludIng g’
in the evaluation function Is to add a breadth-first component to the search ; without g’, the
evaluation function would estimat e, at any node n, the remaining distance to a goal and would
Ignore the distance already covered in reaching n. if the object is to minimize search effort
instead of solution cost , one might conclude that g’ should be omitted from the evaluation
function. An early heuristic search algorithm that did just this was Doran and Michle ’s Graph
Traverser (Doran 8 Michia, 1968; Doran. 1067); t he evaluation function used was of the
form f’ • h’, and the object was to minimize total search effort In finding solutions to the 8-
puzzle and other problems. A generalization covering the Graph Traverser algorithm, A’, and
others has been defined by PohI (1969, 1970a , 1970b) as the Heur~stic Path Algorithm
(HPA) . This algorithm gives an ordered state-space search with an evaluation function of the
form

f’ (1 — w)g’ + wh’

where w is a constant In [0, 1] giving the relative importance to be attached to g and h.
Choosing w ’  1 gives the Graph Traverser algorithm; w ’  0 gives breadth-first search; and
w .6 is equivalent to the A’ function f’ a g’ + h’.

Pohi’s results concerning HPA Indicate that , at least in special cases , omitting g’ from
the evaluation function is a mistake. One case is that In which h’ Is the most accurate
heuristic function possible: If h’(n) ‘ h(n) at every node n, the evaluation function f’ a
still expands no fewer nodes than f’ a g’ + h’. The other case assumes a simplified state
space, whose graph is an infinite m-ary tree, and assumes that the error in h’--which may
underestimate or overestimate h--Is bounded by a nonnegatIve integer e. In this situation It
Is ahown that the maximum number of nodes expanded with f’ • h’ is greater than the

- -—- --- __ _ —J



38 Al Handbook

maximum number expanded with f’ a g’ + h’, and that the difference between the maxima is
exponential In the error bound a. This analysis by PohI is one of the earliest applications of
oracle or adversary analysis for discovering worst-case algorithmic efficiency. As such It is
an important precursor to work on NP-complete problems and their attem pted solution by
heuristics. (For a genera) introduction to NP-completeness see Abe, Hopcroft , & Uliman,
1074.)

The two functions 1’ a h’ and 1’ 
~ 9’ 

+ h’ have not been analyzed with respect to their
average-case , as opposed to worst-case , behavior. PohI’ s empirical results suggest that
ordered search may typically expand the fewest nodes , provided the h’ function is fairly
good, it g’ is Included but given less weight than h’--that is, with w greater then .6 but less ,- 

-

than 1. These results wore obtained for the 15-puzzle, a task exactly like the 8-puzzle
except that It uses 15 tiles in a 4 x 4 array.

For problems that differ from the 15-puzzle, in that some states head to dead t~nds ‘ 
-

rather than only to longer solutions , a somewhat different approach has been taken recently
by Simon and Kadane (1975). Whereas the evaluation functions f~ a g’ + h’ end f’ ~ h’ are
based on the estimated solution cost at a given node, Simon and Kadane propose that the
function should also take explicit account of the probability that the node Is in fact on a
solution path. With such a function, an expected long search with high probability of
success could readily rate just as favorably as one that is potentially shorter but which has
a higher chance of falling.

Solution Quality and Heuristic Error

The second question, of speed vs. solution quality, has been studied by PohI (1973 ,
1917) and Harris (1973, 1074). Harris ’s work concerns the third question (inadmissible
heuristic functions) as well, as do Pohl’s results summarized above. Both Harris and Pohil
consider the traveling-salesman problon , which is NP-complete (Karp, 1972).

Pohi’s approach is a further generalization of the HPA evaluation function: Now
f’(n) ~ g’(n) • w(n)h’(n). That is, the relative weight w to be attached to g’ and h’ is no
longer constant; the function w(n), which may be greater than or equal to 1, is defined to
v ary with the depth of node n. This approach Is called dW2am ic w ighting. With a definition of
w that weights h’ loss heavily as the search goes deeper , and with the assumption that h* is
a lower bound on h, Pohl shows that HPA will find a solution to the traveling-salesman problem
whose cost is bounded by the ratio

cost of tour found 
< i . e

cost of optimal solution

where e is a constant In (0,1) which appears in the definition of w.

Dynamic weighting was tested on an instance of the traveling-salesman problem, known
as the Croes problem, which involves 20 cIties and has a known optimal solution cost of 246.
An admissible A’--whlch produces an optimal solution if It produces any--had still not
terminated after expanding 600 nodes. With dynamic weighting, hoviever, together with an

~~~~~~~~~~~~~~~~~~~ 
.- - V - - -

-
-

Search 39

appropriate choice of a and the same h’ function, a solution with cost 260 was found by
expanding only 63 nodes,

Harris ’s approach, called bandwidth search , is somewhat different from PohI’s. it
assumes that no good h’ function satisfying the admissibility condition Is available. In its
place, ha introduces the bandwidtR’conditzon, which requires that for all non-goal nodes n,

- (1) h’(n) ~ h(n) + a
and

(2) h(n) - d

It Is assumed that h’ satisfies the consistency assumption (see Article C3b).

With respect to the first part of the condition, It can be shown that if h’ never • -
~

overestimates the distance to a goal by more than e, the cost of a solution found by A’ will
not exceed the cost of an optimal solution by more than a. With such an h’, the algorithm is
said to be c—admissible; and the goal it finds, c-optimal.

Once the bandwidth search finds some solution, a further application of condition (1)
may show that the cost of the solution found Is in fact closer than e to an optimal solution.
Th is Is possible because (a) the cost of the solution found Is known, end (b) a lower bound on
the cost of every other solutIon is the minimum, over all nodes n remaIning on the OPEN list, of F I
f’(n) - a. If the difference between these two quantities is too big, the search can be
continued until it finds a solution that Is acceptably close to the optimum.

The second part of the bandwIdth condition, condition (2), can be used to save storage
space by dropping nodes from the OPEN lIst, without any risk of dropping a node that is In
fact on en optimal path to a goal. Let node q be a node that, having a minimum value of f’,
has been selected for expansion. Then any node m may safely be dropped from OPEN If
f’(m) Is hopelessly big compared to f’(q). Specifically, It can be shown that all nodes m can
be dropped If there Is a node q such that

f’(m) - (e + d) > f’(q)

Harris notes that It may be difficult to find a heuristic function h’ that satisfies both
parts of the bandwidth condition, One may instead define two heuristic functions, one to
order the search and one to determine which nodes can be dropped. Such functions, say hi *
and h2’, should then satisfy

(1’) hl’(n) ~ h (n)+e
and

(2’) h(n) - d ~ h2’(n) .

Using two such heuristIc functions, Harris tested the bandwidth search on several
instances of the traveling-salesman problem includIng the 20-city Croes problem mentioned
above. Harris ’s results. Including a comparison with A’ using an *dmisslble heuristic function,
are summarized below. The OPEN list was lImited to 500 nodes.

I

40 Al Handbook

BANDWIDTH SEARCH ADMISSIBLE SEARCH
No. of Quafl ty Nodes Qua ’ ity Nodesc ities of solution expanded of so~ut1on expanded

6 5—optIma l 6
6 optIma l 14 optIma l 18

11 optima l 14 none 588 open nodes
28 4—optIma l 42 none 580 open nodes

FIgure 1. Comparison of bandwidth search and admissible search.

References

See Aho, Hopcroft, & UlIman (1974), Doran & Michie (1966), Doran (1967), Harris(1973), Harris (1974), Karp (1972), Niisson (1971), PohI (1969), Pohl (1970.), PohI(197Ob), Pohi (1973), PohI (1977), and Simon & Kadane (1976).

I

H-

__
--- —--—--~~- - -

Search 41

C3d. Bidire ctional S.s rch

EarlIer articles in this chapter describe (a) heuristic state-space search methods
using forward reasoning and (b) a blind state-space search combining forward and backward
reasoning into a bidirectional algorithm. The kinds of problems to which a bidirectional state-
space method applies are considered in Article Cl; In general , it must be possible In these
problems to search either forward, from the initial state toward the goal, or back wa rd , from
the goal toward the initial state. A bidirectional search pursues both lines of reasoning In
parallel, growing two search trees and terminating when they meet. The motivation Is that, In
many cases, the number of nodes In a search tree grows exponentially with its depth; if a
solution can be found by using two trees of half the depth, the search effort should be
reduced significantly. Blind bidirectional search was in fact found to expand far fewer nodes
than Its unidirectional counterpart. A natural next question is whether heuristic bidirectional
search can give still greater Improvements in efficiency.

This question was investigated by PohI (1969, 1971). Wher eas his blind bidirectionai
algorIthm used forward and backward uniform-cost search, his heuristic algorithm used
forward and backward ordered ~ecrc h. Otherwise, the two algorithms differed mainly In their
termination conditions. In both cases the termination condition was complicated by the fact
that the algorithms were designed to find an optima l path between the start and goal nodes;
they could be simplified if any path would do.

As evalutj on functions, Pohi’s heuristic bidirectional algorithm used functions parallel to
those of A’. For a node x In the forward search tree:

gs(x) measured the shortest path found so tar from the start node, a,
tox

hs(x) estimated the minimum remaining distance from x to the terminal
node, t; and

ts(x) s gs(x) + hi(x) was the evaluation function.
-

SImIlarly, for a node x generated in the backward search:

gt(x) measured the shortest path found so far from x to t;

ht(x) estimated the minimum distance from s to x; and

ft(x) • gt(x) • ht(x) was the evaluation function.

Constraints were placed on the heuristic functions hs and ht, corresponding to the
admissibilIty condition and the consistency assumption of A’, in order to guarantee the
optimality of the solution. -

Pohi’s results, In experiments using bidirectional heuristic search on the 1 5-puzzle,
were disappointing, it was hoped that the search trees rooted at the start and goal nodes
would meet near the middle of the solution path. In blind search, this had happened
necessarily because both trees were expanded breadth-first. (Recall that unIform-cn~sia rch is a generalization of the breadth-first algorithm.) In the heuristic case , however , t~.

—-------- — — -~ ~~
-—~~~

- —~~~~
- - ~-—

---- -~ --~~~ .- —- -~- - ,—-~ _~~~- . __~~~ t -
~~~-~ --~~_,~ -~~ --

~~~~
.-‘

~
- . - -

~~~
-

~~~
-.-

42 Al Handbook

search in each direction was narrowed. Since each problem had many alternate solutions,the typical outcome was that both search trees grew to include nearly complete , butdIfferent , solution paths before Intersecting.

Several ideas have been advanced for forcing the trees to meet earlier while retainingthe benefit of heuristic information (PohI, 1971; Kowalski , 1972; do Champeaux & Sint,1975, 1977; PohI, 1977). One that has been tested is that of Champeaux and Sint, whichredefines the heuristic functions hs and ht as follows:

Let T-OPEN be the list of unexpanded nodes of the backward search
tree. For a node x in the forward search tree , hs(x) estimates the
minimum distance from x to t he goal t by way of some node y in T-
OPEN. That is, hs(x) is the minimum, over all nodes y on T-OPEN, of
the estimated distance from x to y plus gt(y), the length of the
shortest known path from y to the goal.

The function ht is defined analogously. The authors reported, for the same problems PohI hadused, that the algorithm generally produced shorter solution paths, with fewer nodesexpanded, and that the sear ch graphs now dId meet near the middle of the search spare.Unfortunately, however, hs and ht were so expensive to compute--since for each node x tobe expanded, its r~istence must be estimated to every node y on the opposite OPEN list--that the algorithm still ran much more slowly than unidirectional heuristic search. ‘-

Ref erences

See de Champeaux & Sint (1975), de Champeaux & SInt (1977), Kowaiskl (1972), Pohl(1969), PohI (1971), and PohI (1977).

- - - ~~

Search 43

C4, Heuristic Search of an AND /OR Graph

This article returns to the problem of sear ching an AND/OR graph, as opposed to an
ordInary state-space graph. The distinction between the two is the presence of AND nodes ,
whIch add conceptual complications to the search problem. Each node of the AND /OR graph
represents a goal to be achieved. It will be assumed throughout that reasoning Is backward ,
from an lnit~al goal (the root) toward an equiv&ent set of subgoals, all of which have
immediate solutions. On this assumption, an AND/OR graph constitutes (in the terminology of
thIs chapter) a pr oblem-reduction representation. This identification gives another way of
stating the distinction between problem-reduction and state-space representations: State-
space operators always take exactly one Input and produce exactly one output; a problem-
reduction operator also takes a single input but may produce multiple outputs (see Section
B).

To put the matter further into perspective , one may also conceive of searching an
AND/OR graph in the forward direction--from the primitive problems , whose solutions are
already known, toward the problem one actually wishes to solve. Just such a graph search is
that typically conducted by a resolution theorem-prover , as it brings together two or more
axioms or previous conclusions and applies to them an operator yielding one new deduction
as Its result. (See Theorem Proving.) Forward reasonin g in an AND/OR graph, then, would be
distinguished from a state-space search by the presence of multiple-Input , single-output
operators. For further discussion, including an algorithm for bidirectiona l search of an AND/OR
graph, see Kowalskl (1972); see also Martelli and Montanan (1973).

I

The search of an AND/OR graph using backward reasoning raises numerous problems.
Previous articles (B2 and C2) have considered

(a) what constitutes a solution subgraph of an AND/OR graph, and

(b) blind search algorithms for finding a solution subgraph.

This article considers three additional problems:

(c) What might one mean by an optimal solution subgraph?

(d) How can heuristi c Information be brought to bear on the search for an
optimal solution?

(e) What limitations are there on AND/OR graphs and the associated
search algorithms as general tools for problem solving?

The Definition of an Optimal Solution

A solution of an AND/OR graph is a subgraph demonstrating that the start node is
solved. As In a state-space search, one may ask for a solution of minimal cost. The cost of
a solution tree can be defined in either of two ways (Nilsson, 1971):

__
~__., —~~-

-

44 Al Handbook

The sum cost of a solution tree is the sum of all arc costs In the tree.

The max cost of a solution tree is the sum of arc costs along the most
expensive path from the root to a terminal node.

For example , if every arc in the solution tree has cost 1, then the sum cost is the number of
arcs in the tree , and the max cost is the depth of the deepest node.

If the entire search space had been explored, then an optimal solution tree could be
Constructed and its cost measured as follows. Let c(n,m) be the cost of the arc from node n
to a successor node m. Define a function h(n) by:

If n is a terminal node (a primitive problem), then h(n) ~ 0. ,

-

If n has OR successors, then h(n) Is the minimum, over all its
successors m, of c(n,m) • h(m).

If n has AND successors and sum costs are used, then h(n) is the ~. -
-summation, over a ll successors m, of c(n,m) + h(m).
.1if n has AND successors and max costs are used , then h(n) is the

maxImum, over all successors .m, of c(n,m) • h(m).

If n Is a nonterminai node with no successors , then h(n) is infinite.

According to this definition, h(n) is finite if and only if the problem represented by node n is
solvable. For each solvable node n, h(n) gives the cost of an optimal solution tree for the
problem represented by node n. If s is the start node , then h(s) is the cost of an optimal
solution to the Initial problem.

ConsIder , for example , the AND/OR tree of FIgure 1, with arc costs as indicated. Each
node without successors is marked t or u according to whether it Is terminal or unsolvable.

A /NB

~
‘/

~~~ D

/~s: IN
Figure 1. An AND/OR tree.



S.arch 46

If sum costs are used, the values of h are as shown in Figure 2, and the optimal solution is the
subgraph comprising nodes S, B, 0, E, t5, and t6. The abbreviation lnf denotes inf in ity.

S
h.9

A/N B
ha9 hu7

t~/6L\:3 / N
haø haO h’ø hsinf h.4

/\ /N
hsinf hal haint h’2

A
hal hal

Figure 2. Sum costs.

If max costs are used, then the values of h are as shown in Figure 3, and the opti,nal solution
is the subgraph comprisIng nodes S, A, t I , 12, and t3.

S
ha7

ZN
h:6 ha6

t/ 6L2 N3 :/ Nhal hal hal halnf ha3

,
L

h.Inf hal halnf hal

A
- hal hal

FIgure 3. Max costs.

- -  
____



r 
- 

- --

~~

----

~~~~

--- -

~~

--

~~~~~~~ 

-

48 Al Handbook

Ordsrsd S.arc h Algorithms for an AND/OR Graph

in an ordered slate—s pac e search, anti may ese an (2 JJi  ;t~~7i Junct~t n  f ’ that , applied to
node n, returns the ostirnatod minimum cost of a solution path pussing through node n. hi
next nodo expanded is always one at w hich f~ is minImum——that Is , one extends th e most
promIsIng potential solution path. 1 ho I t ’ ~~~~r~ of taiJe n are new nodes , but anti COUUI

Just as well think of them as new t~ ntI~tl solut~o:i paths . nach thtforinu t,oin a parent
(potential solution path) by 11w inclusIon of osw inorti :.top.

In thio extension of houristic Search to AND/O I~ ~r nphs , there s no lonUer S Ofl o— to—one
correspondence between the choice of a node to expand and the chiolct’ of a potential
solution to be extended. Consider , for example , the sonrch graph of 1-iguro 4.

/-~\
A 

C~~~~ L)

F Igure 4. An ANL )/ OIt r oph containing two
potential solution trues.

Since C and D are OR nodes , an act ual solution of node S will contain only one of thorn. To
expand node A Is thus to extend two p~r inf ial  so~’ut~’fl t iei ~s ,

A”\ and A~~~\

/
Conversely, a decision to oxtond the potential solution troo on the left can be carr ied out by
expanding either node A or node C. Ono must be clear , therefore , about what kind of obj ect
the expansion process is to apply to. This decision will at tact the definition of the
eval,,atlon function.

Nllsson ’s algorithm. An approach taken by Ndsson (1 tIOD, 11)7 1) selects indivklual
nodes to expand by a two-step process: Irst , identify the most promising potential solution
true; thon choose a node within that tree for expansion. To accomplish the first stop, an
evaluation function h’ is defined at every node n of the troo that 1)55 not boon shown to ho
unsolvable. This function is an estimate of h (n) ; that Is, it estimates the cost of an optimal
solution to the problem at node n. It n is known to ho a terminal node , then by definition h’(n)
• h(n) • 0. Otherwise, If n has not yet boon expanded, than the estimate must be based on
whatever heuristic information Is available from (tie problem domain. For examp le, In the
search tree of Figure 4, h’ would provide heuristic estimates of the cost of solving nodo~ A,
C, and 0. The following rule then permits h’ to be computed for each nodo whose successors
have alr.,dy been generated (and to be recomputed as the search tree is expanded):

If n has OH successors m, (hen h’(n) Is t h e  minimum, over those
successors , of c(n,m) + h’(m).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  _______ - IIILIIJ



~~~~~~~~~~
‘
~~~~~~~~~~~

- - -
~~~~~~~~~

_ - .

,

-

~~~~~~

~~~~~~

- —-.

~~~

- —-

~~~~~~~~~~~~~

- - -  

~~~~~~ 

- ---

~~

-- —

~~

-

~1’

Search 47

If n has AND successors m and sum costs are used, then ha(n) is the
summation, over these successo rs , of c(n,m) + ha(m).

If n has AND successors m and max costs are used, then ha(n) is the
maximum, over these successor s, of c (n ,m) + h*(m).

Finally, the most promising potential solution tree , T, is defined in terms of ha :

The start node s Is In T,

If the search tree (the part of the search space generated so tar) contains a
node n and AND successors of n, then all these successors are In T.

If the search tree contains a node n and OR successors m of n, then one
successor m is in T such that c(n ,m) + ha(m) is minimal.

The estimated cost of T is h’(s). If all the other potential solution trees for the same search
tree were constructed, it would be found that T is one for which h’(s) is minimal .

An ordered-search algorithm for an AND/OR tree can now be stated as follows:

(1) Put the start node, s , on a list , OPEN, of unexpanded nodes.
(2) From the search tree constructed so far (initially, Just a), compute the most

promising potential s~Iution tree T.
(3) Select a node n that Is on OPEN and in T. Remove node n from OPEN and

place it on a list called CLOSED.
(4) If n Is a terminal node , then

(a) Label node n solved.
(b) If the solution of n makes any of its ancestors solved, label these

ancestors solved.
(c) If the start node is solved, exit with T as the solution tree.
(d) Remove from OPEN any nodes with a solved ancestor.

(6) OtherwIse , If node n has no successors (i.e., if no operator can be applied),
then
(a) Label node n unsolvable.
(b) If the unsolvability of n makes any of its ancestors unsolvable, label

all such ancestors unsolvable as well.
(c) If the start node Is labeled unsolvable , exit with failure.
(d) Remove from OPEN any nodes with an unsolvable ancestor.

(6) Otherwise, expand node n, generating all its immediate successors and, for
each successor m representing a set of more than one subproblem,
generating successors of m corresponding to the individual subproblems.
Attach, to each newly generated node, a pointer back to Its immediate
predecessor , and comput e h for each newly generated node. Place all the
new nodes that do not yet have descendants on OPEN. Finally, recompute
h’(n) and h~ at each ancestor of n.

(7) Go to (2).
-

The ordered-search algorithm can be shown to be admissLb&-- that Is, it will find a
minimum-cost solution tree If any solution exists--provided that: (a) ha(n) is less than or

~~ —---—----- ---
- - — -

~~~~ - - ---. -~~~~-- - - - - ~ -~~~~----- - --- .- -



48 Al Handbook

equal to h(n) for each open node n, and (b) all arc costs are greater than some smali positive
number d. The efficiency of the algorithm , however , depends both on the accuracy of hR and
on the implementation of step 3, In which , having found the most promising potential solution
tree to expand, one must decide to expand a specif ic node within that tree. if the partial
tree I Is in tact part of an optimum solution, the choice is immateria l. If it Is not , however ,
then the best node to expand would be the one that will earliest reveal the error.

Chang and Slagle ’s algorithm. A different approach has been taken by Chang and
Slagle (1971). Here the objects expanded are potential solution graphs. A ti~ nod in such a
graph is any node that does not yet have successors. To expand the potential solution
graph, one expands all its nonterminal tip nodes at once and then forms all the new potential
solution graphs that result. Each graph is represented on the OPEN list by the conjunction of
Its tip nodes, representing a set of subproblcms to which the start node can be reduced.

For example , suppose that expans ion of the initial graph , consisting of only the start
node S, shows that S can be reduced to problems A and B or to problem C. The OPEN list
then becomes (A&B, C). Assurno that A&B is selected for expansion, that A can be reduced
to D or E, and that B can be reduced to F or C. There are tour new potential solution trees ,
and the OPEN list is now (D&F, D&G , E&F, E&G , C). The search succeeds when it selects for
expansion a potential solution graoh represented by a conjunction of nodes all of which are
terminal.

The Chang and Slagle approach assimilates AND /OR graph search to the problem of
state-space search. Each distinct conjunction of problems to be solved corresponds to a
distinct state of a state-space graph. The evaluation functIon used, f* , is also parallel to
the function used in AR : It is defined by f’ = g* + h , where g~ meas ures the cheapest way
found so far to reduc e the start node to a given conjunction of subprobioms and h~ estimates
the minimum remaining cost of a graph sufficient to solve all those subprobIems.

The treatment of AND/OR graph search as an instance of state-space search has
several consequences. One is that the search of a general AND/OR graph, as opposed to an
AND/OR tree, now raises no special problems. Another is that the algorithm can be shown
(Chang & Slagle, 1971), under appropriate conditions, to be not only admissible but also
optimal with respect to the number of potential solution graphs expanded. it does not ,
however, appear to be Optimal (in some reasonable sense of that term) In comparison with
algorithms that expand only one node at a time (see i(.owatskl , 1972).

int erdep endent Subprob lems

The discussion so far has assumed that whenever the start node is reduced to a
Conjunction of subproblems, all subproblems can be solved Independently, so that the solution
to one has no effect on the solution to any other. This assumption is frequently unjustified,
and much of the chapter on Planning explores ways of dealing with interacting subproblems.
Two kinds of examples , given by Levi and Sirovich (1075 , 1976) with explicit reference to
the AND/OR graph formalism , are: (a) problems requiring consistent binding of variables and
(b) problems involvIng the expenditure of scarce resources.

An illustratIon of the former Is the well-known problem of showing that there exists a
fallible Greek , given that the entire search space is as follows: 

- - -~~~~- - -~~~~~~~~~- --- 

_

~

-- - - ~~~- - - - -



Search 49

Find a faf l iblo Greek

Find someth in fa ) 1i~~~ ~~~d something Greek

Find somethl4 human Socrates is Greek

/ \Turing Socrat es
is human Is human

Figure 6. An AND /OR graph requIring consistent binding
of the variable “something.”

An algorithm like Nilason ’s tails here for two reasons. First , it has no mechanism for
discovering that “Turing is human” and “Socrates is Greek” fail to constitute a solution.
Second, even if such a mechanism were introduced, the algorithm has no means for undoing
the solution to a subproblem once it has been soIvei.~. If “Turing Is human” Is the first
problem found to be primitive , then “Find something human” and “Find something fallible” are
marked solved; “Socrates is human” is removed from the OPEN list as no longer In need of
consideration; and “Find something Greek ,” usIng the previous value of “something ,” then
becomes unsolvable.

An example of the second type of problem is the following: Show that John can seduce
the actress , given that seducing the actress can be reduced to getting a car and getting a
yacht; and that John has $6000, a car costs $6000, and a yacht costs $6000. Here either
of the algorithms given above would wrongly conclude that John can seduce the actress. A
variant of the scarce resource problem arises in robot plannIng tasks (such as those
performed by STRIPS, Article 05), where application of an operator representing a robot
action solving one subprobtem may make inapplicable the operator needed to solve another
aubprobiem.

To handle problems of those kinds , Levi and SIrovlch define a geneiali~r~i A N t i / O R
graph, which differs most importantly from an ordinary AND/OR graph in that reduction
operators are permitt ed to take two or more nodes as Input. For example, let H be a
resource that can be used only once. Then If , in the standard formulation, the orIgInal
problem Is to accomplish P1 and P2, the problem is reformulated as P1 & P2 & H. Suppr’se
the following reduction operators are avaIlable (where -> moans “can be reduced to” and I
denotes a trivial problem):

1) S->P 1&P2&R
2) P 1 & R - > T
3) P1 -> P3
4) P 2 & R - > P3
6) P3 -> T
8) R-) T

Then there is only one solution, which Is achieved using operators 1, 3, 4, and 6.

— ----- - -- — - ----.--- 
- .— —.- -

~
-
~ - - -~~ —~~ — - — - — -~~~.-~---- --- -.-.--— -—~~. — ——.- .— —



60 Al Handbook

In the ordered search of a generalized AND/OR graph, the objects placed on the OPEN
list are potential solution graphs, not individual nodes. Expansion of a potential solution
graph (PSG) consists of applying all possible operators to obtain a new set of PSGs, each
differing from its parent by virtue of one additional operator application. If the same
subproblem occurs more than once within a PSG, each occurrence is represented by a
se parate node, If the same PSG is generated more than once, later occurrences are simply
discarded. Since distinct PSGs are retained, alternate solutions to the same subproblem are
available.

As in the usual ordered search, the object chosen for expansion next Is always one
where the evaluation function Is minimum. The evaluation function is ha ; for each PSG, it is
computed sImIlarly to the hR of Nllsson ’s algorithm. The value of each potential solution graph
Is then the evaluation of the start node, ha(s) , as computed for that graph. Both admissibilit y
and opama.lUy--the latter with respect to the number of PSGs expanded--can be shown. 

;

_
. 

-

References

See Chang 8 Slagle (1971), KowaL.ki (1972). Levi 8 Sirovich (1976), Levi 8 Sirovich
(1976), Martelii 8 Montanan (1973), Niisson (1969), and Niisson (1971).

E.

_ _ _ _ _ _  --- -—~~~~~~~~~~~~~ —~~~~~~~~~~~~~~~~~ ---~~~-—- ~~~~~ - - - --
~~
-.——

~~~~
-
~~~

- — - - -
~~~~~~~~~~ 

- - -
~ - -

~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~_-~~~~~~~~~~~~ 5_~~~~_


Search 61

C6. Gems Tree Search

C6a. MInIma* Procedure

The Mlnlmax Formali sm

The minlmax procedure is a technique for searching game trees (Article B3). As a first
example, Figure 1 gIves a simple game tree to which the procedure may be applied. Each
node represents a position in the game. Nonterminal nodes are labeled with the name of the
player, A or B, who Is to move from that position. It Is A’s turn , and the problem is to find his
best move from position 1. Exactly three moves remain in the game. Terminal nodes are
marked with their value to player A by the wcrds “win ,” “lose,” or “draw. ”

1

N1j~.
J\ J\ J”~5 J”i’7 J\ 2C>1win win lose win lose lose draw draw win draw lose draw

Figure 1. A game tree from the standpoint of
player A, who is to move next.

According to the minimax technique, player A should move to whichever one of positions
2 or 3 has the greater value to him. Given the values of the terminal positions, the value of
a nontermlnai position is computed, by backing up from the termh~als, as follows:

The value to player A of a node with OR successors (a node from
which A chooses the next move) is the maximum value of any of its
success ors.

(1)
The value to A of a node with AND successors (a node from which B
chooses the next move) Is the minimum value of any of its successors.

In the sxamp le, node 2 evaluates to a loss for A (since B can then force a loss by moving to
node 6), and node 3 evaluates to a draw (since the best B can then do Is move to node 7 or
9). It will b. noted that the prediction of the opponent ’s behavio r assumes he is also using
mlnlmax: In evaluating a node with AND successors, A must assume that B will make his best
possible move. The technique ignores the possibility that B might overlook his chance for a

‘I

‘—
.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—- - --- -.------ .-—-
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~-~~~ - ~~~~~~~~~~~~~



—

62 Al Handbook

sure win If A goes to node 2. Similarly, it supplies no basis on which B might choose to move
to node 9 in preference to node 7.

Because of the way in which nodes are evaluated, player A (whose viewpoint the tree
represents) is often called MAX, and player B, MIN. The names PLUS and MINUS are also
sometimes used. If the tree of Figure 1 were to be evaluated from MIN’s standpoint Instead
of MAX’s, it would appear as in Figure 2. The AND and OR nodes are reversed, and the value
of each node to MIN is the opposite of its value to MAX.

draw

win draw

L 

_

lose lose win draw lose draw

~

“‘

~~ ~~(

‘“

~~~ i
’’

~ S 1~
’
~

’

~”7 l~
’1”

i’9 2(
’’

~
’1lose Jose win Jose w in win draw draw los e draw win draw

FIgure 2. The game tree of Figure 1 from B’s standpoint.

The N.gmax Forma lism

Knuth and Moore (1976) have given a game-tree representation that unifies Figures 1
and 2 and conveniently permits a single procedure to return optimal moves for both players A
and 8. in this representation, the value given each node is its value to the player whose
turn It would be to move at that node. If n Is a terminal node, Its value Is an Integer denoted
f(n). (The value of n to the other player Is -f(n).) The value of every node is then returned
by a function F defined as follows:

F(n) s f(n), if n has no successors;
F(n) s max (-F(nl), ... ,-F(nk)), if n has successors ni , ... ,nk,

The best move for either player is then to a node with maximum value; that Is, the player
whose turn it is at node n should move from node n to a node nl with - F(nI) ~ F(n). This
formulation, which is equivalent to minimax, Is called negmax . The tree it produces for the
game of Figures 1 and 2 is shown in Figure 3. The numerical value of a win Is assumed to be
.1; of a loss , -1; and of a draw , 0.

-

a

Search 63

A
Faø

2 / N 3
F a i l -

/~~N
Fa+ 1 Fail Fa— 1 Fz~ Fa+1 FaØ

J\ %\ ~(\ ~~~“\ 2(~I’1F.—l F.—.l F.’i’l Fa—1 Fal l Fail FaB Faa Fa— 1 Faø Fa+1 Faø

FIgure 3, The game tree of Figure 1 in NEGMAX notation .

Searching a Partial Game Tree

In the above descriptions of the minimax and negmax algorithms, it was assumed that a ‘-
‘ -

complete game tree had already been generated. For most games, however , the tree of
possibilities Is far too large to be generated fully and searched backward from the terminal
nodes for an optimal move. An alternative is to generate a reasonable portion of the tree,
starting from the current position; make a move on the basis of this partial knowledge; let the ‘ -

opponent reply; and then repeat the process beginning from the new position. A “reasonable
portion of the tree” might be taken to mean all legal moves within a fixed limit of depth, time,
or storage, or It might be refined In various ways. For discussion of the refinements , see
ar ticle C5c.

Once the partial tree exists , mInimaxing requires a means for estimating the value of its
tip nodes, that is, the nodes of the partial tree without successors. A function assigning such
a value is called a static evaluation function; it serves a purpose comparable to that of the
heuristic function hR used in Nllsson’s ordered search of an AND/OR tree (Article C4), If the
partial game tree contains any nodes that are terminal for the entire tree, the static
evaluation function conventionally returns positive infinity for a win, negative Infinity for a
loss, and zero for a draw. At other tip nodes, the function has a finite value which, In the
minimax formulation, Is positive for positions favorable to MAX and negative at positions
favorable to MIN. The minimax procedure then assigns backed-up values to the ancestors of
the tip nodes In accordance with the rules given In (1) above. It is assumed that the
backed-up evaluations give a more accurate estimate of the true value of MAX’s possible
moves than would be obtained by applying the static evaluation function directly to those
moves and not looking ahead to their consequences.

References

See Knuth & Moore (1976), Nilsson (1971), Slagle (1971), and Winston (1977).

I

--
— — S S

_ _ _ -

64 Al Han db ook

C6b. Al pha-beta Pruning

The mlnlmax procedure described in Article CSa decides on a best move from node n, In
a full or partial game tree , by evaluating every node in the tree that descends from node n.
Frequently, this exhaustive evaluation is a waste of time. Two examples are shown in
Figures 1 and 2. Each node is marked with the name of the player who is to move from that
position.

1 1
MAX MAX

2~~~~~~~ 3 2~~~~~~~~~3
PUN MIN MIN PUN

F(2) .l5
/ \

5 4
/ \ 5

MAX MAX MAX MAX
F(4)s 1ø F(4) :28

,
f \

6 7 H
PUN NIN

F(6) a25

Figure 1. An alpha cutoff. Figure 2. A beta cutoff.

In Figure 1, nodes 2 and 4 have been evaluated either by the static evaluation function
or by backing up from descendants omitted from the figure. If MAX moves to node 2, he
achieves a position whose estimated value Is 15. If he moves to node 3, MIPS can hold him to
10. Therefore , the value of node 3 is at most 10, so MAX should decide to move to node 2.
The Important point is that this decision can be made without evaluating node 6 or any of its
possible descendants.

In Figure 2, node 4 has an estimated value to MAX of 20. When node 6 is evaluated at
26, it becomes clear that MIN should avoid moving to node 5. Node 2 can therefore be
assigned a value of 20 without any need to evaluate node 7 or any of its descendants.

The alp/ta-beta technique for evaluating nodes of a game tree eliminates these
unnecessary evaluations. If, as is usual, the generation of nodes is interleaved with their
evaluation, then nodes such as the descendants of node 5 in Figure 1 and of node 7 In
Figure 2 need never even be generated. The technique uses two parameters, alpha and
beta. In Figure 1, the parameter alpha carries the lower bound of 15 on MAX’s achIevement
from node 1; the elimination of node 6 Is an alpha cutoff. In Figure 2, the parameter beta Is
set to 20 at node 4, representing an upper bound on the value to MAX of node 2; the
eliminatIon of node 7 is a beta cutoff. The procedure guarantees that the roct node of the
tree will have the same final value as if exhaustive minlmaxing were employed.

A conc ise statemen t of the alpha-beta procedure has been given by Knuth and Moore -

(1975). it uses their negmax representation in which both players are treated as wishing to
maximize (see Article C6). Figure 3 shows how Figures 1 and 2 are transformed in the
negmax representation.

—
—- --- 5-- ~— .

Search 65

1 1
MAX MAX

2~~~~~~~3 2 ”~~~~~3KIN KIN MIN KIN
F(2)a~~15/ \ / \

MAX MAX MAX MAX
F(4)s 18 F(4).2a / \

KIN KIN
F(6)a .45

Figure 3. The NEGMAX representation of Figures 1 and 2.

To evaluate node 1 of either tree, the procedure is called with the parameters POSITION a

node 1, ALPHA . negative InfinIty, and BETA ~ positive infinity. The static evaluation function •

Is called f. The procedure, here called VALUE, is as follows:

INTEGER PROCEDURE value(POSITION p, INTEGER alpha, INTEGER beta)
BEGIN P~.

INTEG ER m, i, t, d
determine the successor positions p1, p2, ... , Pd
of position p;

IF d a 0 THEN value :• f(p) ELSE
BEGIN
m :~~alpha;FOR I :~ 1 STEP I UNTIL d DO

BEGIN t :~ -value (pt, -beta, -m);
lF t >mT H EN m :~~t ;
IF m > beta or m. beta THEN GO TO done;
END;

done: value . m;
END;

END;

For an Intuitively developed LISP version of the alpha-beta procedure, see Winston (1 977).
An excellent review of the historical development of the technique appears In Knuth and
Moors (1976).

Ord.r lng of Succ .ssors

The degree to which the alpha-beta procedure represents an Improvement in efficiency

over strai ght mlnimax ing varies with the order in which successor nodes are evaluated. For
exam ple, no cutoff would occur In Figure 1 if node 3 were considered before node 2.

In general, It is desirable that the best successor of each node be the first one
evaluated--that Is, that the first move MAX considers be his best move, and that the first

- --- ——------——----- --- .-
~~--~~~ - .5- -- ~-.5---.-- —--- -5’—- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

-~~~~
- ~~ - - —~~~~~-- - -

56 Al Handbôok

reply considered for M1N be the move that Is best for MIN and worst for MAX. Several
schemes for ordering the successors of a node have been described to try to achieve this
state of affairs. One possibility , an example of fixed orderin g, is to apply the static
evaluation function to the successors , taking the results of this preliminary evaluation as an
approximation of their expected backed-up values. A method of this sort will result in depth-
first generation and evaluation of the partial game tree , subject to the depth bound or other
criteria for terminating generation. For some other possibilities , see Article C5c.

Efficiency in Uniform Game Trees

Since the alpha-beta procedure is more complicated than minimaxlng, although it yields
the same result , one may inquire how great an increase it produces in search efficiency.
Most theoretical results on this question deal with uniform game trees: A tre e is said to be ‘uniform If every tip node has depth d and every nontip node has exactly b successors. Here
b is called the branch ing factor or degree of the tree.

The results reviewed below come from Knuth and Moore (1975) and, for the best case ,
Siagie and Dixon (1389). For other related work, see Fuller et al. (1973), Newborn (1977), p-i
and Baudet (19 78).

The best case. A uniform game tree of depth d and degree b contains exactly b’~ tipnodes, all of which must be examined by minimax. In the worst case , alpha-beta also must
examine every tip node. In the best case , alpha-beta examines only about twice the square
root of the number of tip nodes. More precisely, assuming the value of the root is not
Infinite, the number of tip nodes examined in the best case is

bE 4 i
~’2) + b~ ’2] — 1

(w here square brackets represent the greatest integer function); and the nodes examined In
the tree as a whole are precisely the critical n~~es, defined as follows:

Type 1 critical nodes are the root node and all first successors of type I nodes.

Type 2 critical nodes are all further successors (except the first) of type 1
nodes and all successors of type 3 nodes.

Type 3 crItical nodes are the first successors of type 2 nodes.

Figure 4 illustrates the distributIon of critical nodes In a uniform tree of degree 3 and depth
3.

I

- 5 - - — -~~~~~ ---—.5 - - -~~- - ---’— ———-_—

Search 57

~/I\ /\ /~\1’P’2 31(\ 31(\ 2’T’~2 X’~’~X XI(\ 2’T’2 xl~”x XIC\
FIgure 4. DistrIbution of crit ical nodes .

Knuth and Moore have shown that the best case occurs for a uniform tree if the best move is
considered first at each critical node of types 1 and 2. Attem pts to order the successors of
type 3 positions contribute nothing to efficiency, since these successors are type 2 nodes,
which must all be - -:- ~ ..5mined anyway.

Random uniform game trees. Knuth and Moore also show that the alpha-beta
.

-

technIque is optimal In the sense that no algorithm can evaluate any game tree by examining
fewer nodes than alpha-beta does with an appropr~ate~ordedng of successors. Realistically,

-
-

of course, one cannot expect to ach~ ye4he~ó~~imaI successor ordering, since this would
Imply full knowledge of the game- tree before it is generated. Assuming, therefore, that the
tip nodes of the tree have distinct random values, Knuth and Moore show that the expected
number of tip nodes examined, in evaluation of a uniform tree with branching factor b and
depth d, has an asymptotic upper bound of

(b/(Iog b))d
as d goes to infinity.

Totally dependent uniform game trees. One other type of tree considered by Knuth
and Moore, perhaps more realistic than the one in which tip nodes have random values,
corresponds to games in which each move is critical: If a poor move is ever chosen, there is
no way to recoup. The model is a uniform game tree that is total ly dependent: For any two
successors of node p, these successors can be labeled q and r so that every tip node
descended from node q has greater value than any tip node descended from node r. in this
type of tree, if the degree is at least 3, the expected number of tip positions examined is
bounded by a constant (depending on the degree) multiplied by the number of tip nodes
exa mined by the alpha-beta method in the best case.

Ref erences

See Baudet (1978). Fuller, Gaschnig & GIllogly (1973), Knuth & Moore (1975), Newborn
(1977), Nilsson (1971), Slagle & Dixon (1969), Slagle (1971), and Winston (197?).

5’- ~~~-- — -- —- -~~~~~~~~~~~~~ — - — - - — - - .55’~~ - ——-~~~~~~~-

68 Al Handbook

C5c, Heuristics In Game Tree Search

In the search of a game tree (Artic le 83). as in other kmds of se arch, there are various
points at which heuristic information may be applied. The parallel Is not exact , however. In
one-person problem solving, the main uses for heuristic information are to decide which node
to expana next , which operator to apply next , and, in some algorithms , which nodes to prL’ie
from the search tree. (See Article C33.) In game-playing programs , these questions also
exist , but with a shift In emp hasis. in addition , some new questions arise: When should the
search be terminated? How should a move be chosen on the basis of the search that has
been made?

The simplest answers to these quostions were described in Article C5e: Expand every . -

node completely, In any convenient order and with no pruning, untii every tip node represents
a termination of the game. Then, working back from the end of the game , use the minimax
procedure to find a winning line of play (if one exists), and follow this line of play throughout ‘

-

the game. Article C5b, Alpha-beta Pruning, described an improvement on this approach that
yields the same final result with greater efficiency.

A program using only these basic techniques would play a theoretically perfect game;
its task would be like searching an AND /OR tree for a solution to a one-person problem. For a
simple game like tic-tac -toe (see Article B3). such a program w’ uld no doubt be feas ible.
For complex games , however , it has been recognized fr om the beginning that searching from
the start of the game to its end would be impossible. In chess , for example , with around 30
legal moves from each position and about 40 moves for each player in a typical game, there
are some (302)40 or 1 0120 different plays of tile game (Shannon, 1950).

Because of the magnitude of the search space in chess , checkers , and other nontrivial
games, there is a major difference between programs that play such games and programs
that use the methods of this chapter to solve nonadversa ry problems. The latter either find
a solution or fail , having run out of time or space; much of the research assumes that some
solution can be found and deals w ith how to guarantee that it is optimal or nearly optimal
(see Section C3, Heuristic State-s pace Search). The question for a chess program, in
contrast , is how to play a good game even though it has not found a solution to the problem
of winning. Repeatedly the program must become committed to its next move long before the
end of the game comes into view. Whet her the move chosen is In fact part of a winning
strategy Is unknown until later In the game.

For a nontrivial game playing program, then, the Issues listed at the beginning of this
article are all aspects of a broader question: Can the basic search techniques, designed for
seeking a guara nteed win, be suc cessfully adapted to the problem of simply choosing the
next move? In addition, one might well ask whether there are alternatives to search as the
basis for move selection. Most of the work exploring these questions has been done in the
specific domain of chess. in general , the discussion below is limited to chess programs and
Samuel’s checkers program (1963, 1967).

Alternatives to Search

An example of choosIng a move on a basIs other than search is the use of “book
moves~ in the opening of a chess game (see Frey, 197 7, pp. 77-79). More generally, there

-~

Search 59

is an emphasis in the recent computer chess literature on treating the problem of move
choice as a problem of recognizing patterns on the board and associating appropriate playing
methods with each pattern (e.g., Charness , 1977, p. 52; Bratko et al., 1978; W.lkins, 1979).

It is not expected , however , that search can be eliminated entirely from chess
programs; even human players do some searching. Rather , the choice-of-move problem is
seen as involving a tradeoff between the amount of specialized chess knowledge a program
has and the amount of search it needs to do. (See , e.g., Berliner 1977c ; Michie , 1977.) And
there are limits on the amount of knowledge a program can be given: The combinatorics of
chess preclude stor~ng an exhaustive representation of the game; and even the knowledge
possessed by chess mast ers , which greatly restricts sear ch in human play, also remains very
far from complete formalization.

The last section of this article reviews several programs that attempt to use human-
like knowledge to eliminate most searching. The sections preceding it concern techniques
used in programs in which search rather than knowledge is predominant.

Search-based Programs

The most successful game-playing programs so far have made search rather than
knowledge their main ingredient. These include , among the earlier programs, Samuel’s
checkers program (1963 , 1967), which came close to expert play; and Greenblatt’ s chess
program (1967) , which was the first to compete in tournaments and which earned a rating of
1400-1450, making it a Class C player. (Current classes of the United States Chess
Federation are E through A , Expert , Master , and Senior Master. See Hearst , 1977 , p. 171.)
Notable later programs include the Soviet program KAISSA (Adelson-Veiskiy et al., ~~76),
which won the first world computer chess championship in 1974 , and Slate and Atkin ’s CHESS
4.5 (1977), whose current standing is mentioned below, (For general reviews of computer
chess competition, see Berliner , l9?8a; Mittman , 1977; and Newborn, 1975.)

All the programs referred to above follow the basic search paradigm formulated by
Shannon In 1950. In its simplest form , which was called a Type A program , Shannon ’s
paradigm made just two changes to tile procedure mentioned above that calls for searching
exhaustiveiy all the way to the end of the game. First , the game tree was to be generated
only to a fixed depth. Second, since the nodes at the depth limit would normally be
nonterminal, a means of estimating the promise of these nodes was required. The estimate
was to be given by a static evaluation function , whose values could then be backed up by
minimaxing to determine the next move. After this move was made and the opponent had
replied, the search process would be repeated beginning from the new position.

Shannon noted that a simple Type A program would play chess both badly and slowly.
He suggested two directions for improvement in a Type A program, with which t he program
would become Type B. The general objectives were , first , to let the exploration of a line of
play continue to a reasonable stoppIng point instead of invariably cutting it of f at an arbitrary
depth~ and, second, to provide some selectivity about the lines of play considered , so that
more time could be spent investigating strong moves and less on pointless ones.

Even a Type B program , Shannon concluded , seemed to rely too much on brute-force
calculation rather than on knowledgeable analysis of the situation to choose a move.

5’- - - -

5’-.

60 Al Handbook

Nevertheless , his proposals estabtishod a framework that most competitive çlame-playn~
programs have adopted. iho framework raises a large number of interrelated Issues , which
are discussed in the following sections.

StatIc Evaluation

A stat ic evaluation function , by definition , Is OflO that ostima os the value of a board
position without looking at any of that position’s successors. An ideal function would be one
that reports whether the position leads to a~~ 1n, a loss , or a draw (provided neither side
makes a mIstake). Even more informatively, the function might report the number of moves
required to win, with an arbitrarily large value if no win Is possible. But functions that can •

distinguish between winning and losing positions are known only for simple games; an
example of such a function for t he game Nim Is given in Shannon (1950).

Whore perfect evaluation functions a re u n ava i lab le , the actual static evaluator must
return an estimate. Unlike the n’,iluati~n f u nct ion used in an ordinary state-space or AND/0I~
graph search (C3a , C4), the static evaluation function of a game-playing program does not
normally attempt directly to estimate (lie distance to a win from the position evaluated. (For
a proposal that the function should do just this , sea Harris , 1974.) Instead, tile function is
usually a linear polynomial whose terms represent various features of tile position, high
values being given for features favorable to the program and low ones for those favoring the
opponent. in chess , the most Important feature Is material , the relative value of each side ’s
pieces Ofl the board. Other typical features, familiar to chess players , include king safety.
mobility, center control, and pawn structure.

The most extended treatment of evaluation functions In the literature Is provided by
Samuel (1963, 1967). For checkers, fl,.’ concluded (1067 , p. 611) that the optimal number of
features to be used in the evaluation function was between twenty and thirty. Samuel’ s main
interest was in machine learning; one approach ho took was to provide his checkers program
with a large sot of features for possible use in the evaluation function and to let the program
determine, as It gained playing experience , both which of those features should be included
and what their relative weights should be. In a later version of the program , the emphasis
was shifted to taking tile interactions among featu res into account in evaluating positions.
With th is change, tile evaluation function became nonlinear , and considerable Improvement
was reported In Its quality as measured by tho correlation with moves chosen In master play
(Samuel, 1967; see also Griffith , 1974). For further discussion of Samuel’s work , see
Leorrw ng.

Reasonably accurate static evaluation , then, requires a rather complex function. Rut
there Is an important limit on the complexity that Is feasible, especially for a program that
plays In tournaments , under time limitations. As tile total number of tip nodes in the search
tree increases, the time available f or evaluating any single tip node goes down. Thus
Gillogly’s chess program TECH (1972), which was Intended as an experiment in how mw. I
could be accomplished on advanced machines by simple brute force search, and which
generates up to 500,000 tIp nodes even with alpha-beta pruning, uses material as the only
factor In Its static evaluations.

Search 61

Backed-u p Evaluation

The Shannon paradigm assumes that t he step between static evaluation and the choice
of a move Is simply minimaxing: The program moves to any position with the best backed-up
minlmax value. This step Is Indeed very commonly used. But it Is worth noting that, since tile
static evaluation function may be wrong, the minlmax procedure no longer serves its original
purpose of defining and identifying a move that is theoret ically correct. Instead , minimaxing
has itself become a heuristic for the choice of move. Several programs have therefore
experimented with varying or supplementing the minimax procedure. Slagle and Dixon
(1970), for example , in experiments with the game of kalah , compute the backed-up value of
a node by taking into account not only the value of its best successor but also whether the
node has several good successors or just one. Gillogly ’s TECH (1972) , having computed
minimax values on the basis of an extremely simple static evaluation, breaks ties between
moves with equal minimax values by an analysis of features not considered by the evaluation
function. Newell, Shaw , and Simon (1063a) set a value in advance that the search is
expected to achieve; the first move found that meets this standard is ma de, and only If no
move is good enough is the best minimax value used to determine the move (see also Newell
& Simon, 1972).

Depth of Search

if perfect evaluation functions were avail6ble, a game-playing program could proceed
at each turn by generating all legal moves , evaluating each of the resulting positions, and
choosing the move leading to the best value. The reason for looking farther ahead is to
compensate for errors In the static evaluation. The assumption is that, since static
evaluation has a predictive aspect, there will be less room for mistaken prediction if a deep
tr ee Is generated before the evaluation function is applied.

The controlling fact about search depth is the combinatorial explosion. If the average
num ber of lega l moves from a position, the branchin g factor , is b, the game tree will have about
bd nodes at depth d. According to Shannon’s estimate for chess , a complete tree carried to
depth 6--3 moves for each player--would already have about one billion tip nodes. At the
same time, Shannon noted, a world champion may occasionally look ahead, along a single line
of play, to a depth as great as 15 or 20. More recently Hans Berliner, a former World
Cirrespondence Chess Champion, has said he finds it necessa ry at least once In a game to
look ahead to a depth of 14 or more (1074 , p. 1-8). The question, then, Is how to get the
needed depth , In the right places , without succumbing to the combinatorial explosion. An
alternative question would be how to avoid the need for so deep a search. The remainder of
this article concerns attempts to solve or at least alleviate these problems. First , however. -

experience with the use of depth bounds as such will be reviewed.

Fixed—depth search with extensions for quiescence. The simplest iookahead
procedure, which was called for by Shannon’s Type A strategy, is to set a fixed depth, or

ply, to which the game tree is to be generated and to apply the static evaluation function
only to nodes at this depth. Thus a 4-ply search would statically evaluate the positions
reached after exactly two turns for each player. There are serious drawbacks in this
procedure, as Shannon observed, and it was used only in very early programs (Kister et a).,
1957; Bernstein et al., 1959). For example, a chess evaluation function based mainly on
material cannot return a realistic value it at the depth limit the players happen to be halfway

A

-. - — --

7

62 Al Handbook

through an exchange of pieces. The concept of a or ‘~:d position was introduced to
get around such difficulties (Shannon , 1950; s&~o also Turing. 1953): Search would be
extended beyond the normal limit , from nonquloscent positions only, until all tip nodes were
relatively stable or perhaps until some absoluto depth-bound had been reached.

Tills introduction of a quiescence search was one of the two features that changed a
program, in Shannon’s terminology, from T ypo A to Typo B. On Shannon’s suggested
definition, a position was considered nonquiescent it “any piece is attacked by a piece of
lower value, or by more pieces than defences or if any check exists on a square controlled
by opponent” (1950, p. 271). Many programs have adopted a similar definition, with the
result that the only moves examined beyond the normal limit are checks and immediate
captures (e.g., Gillogly, 1972; Adelson-Velskiy et al., 1975; Sl,~tu & Atki n, 1077). If such a
quiescence search Is combined with considering all legal moves down to tile nornlal depth
limit , the program is still called Type A in current terminology (e.g., Berliner , 1978a).

The horIzon effect. Searching to an arbitra rily limited depth , even with extensions for
checks and captures , creates a phenomenon that Berliner (1973 , 1974) has called the
horizon effrct. Berliner ’s gener al observation is that , whenever search Is terminated (short of
the end of the game) and a static evaluation function is applied, the program ’s “reality
exists in terms of the output of the static evaluation function , and anything that is not
detectable at evaluation time does not exist as tar as the program Is concerned” (1974 , p.
I—i) .

Two kinds of errors ensue. The f irst is called the negative horizon effect: Tile prograni
manipulates the timing of moves to force certain positions to appear at the search horizon ,
and it thus may conclude that it has avoidod sonic undesirable effect when in fact the ef fect
has only been delayed to a point beyond the horizon. A second kind of error , the posit ivt~
horizon effect, involves reaching for a desirable consequence: Either t h e program wrongly
concludes that the consoquonce is achievable , or it fails to realize that tile Safl iC
consequence could also be achieved later In tile game in a more ef fect ive form , This last
problem, Berliner believes , can be met only by finding ways to represent and use more chess
knowledge than traditional programs have included (1074 , p. 1-7).

For most of the errors coming from the horizon eff uct , however , the diagnosis is that
the typical definitions of quiescence are highly oversimplified. Ideally a position would he
considered quiescent only when the static evaluation function , applied to that position , could
return a realistic value , that is. when tIle value of every term included in the function had
become stable. A quiescence search that pursues only captures and checking moves ,
howevsr, considers only changes in the material term. The material term itself , moreover .
usua lly reflects only the presence ot the pieces on the board; its value will be unchanged by
a move that guarantees a capture later instead of making a capture now.

To get around the problems arising from inadequate quiescence analysis , a first
approach called secondar y searc h was developed by Greonblaft (1067) : Whenever a move
appeared, on the basis of the regular search (including quiescence), to be the best move
considered so far, the predicted line of play was extended by searching another two ply
(plus quIescence) to test the evaluation. Berliner points out , however: “The horizon effect
cannot be dealt with adequately by merely shifting the horizon” (1974 , p. 1-4). One direction
In current work , therefor e, looks toward a much fuller quiescence analysis as a substitute for
arbitrary depth bounds. (See Harris , 1975, 1977; Slate 8, Atk ln, 1077 , pp. 116- 1 17; and,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~
.
~~~~~~~~~~~ -- -~ - -. - -~~-— — -~ .-- ---



Search 63

for an early example, Newell & Simon, 1972, pp. 678-696.) Berliner meanwhile is developing
a general algorithm, not limited to chess, for causing tree search to terminate with a best
move, even though no depth limit has been set and no full path to a win has been found
(Berliner , 1977 c, 1978b).

iterative deepening. Despite its drawbacks, most current programs still use a fixed-
depth search, extended for checks and capture sequences. A variation used by CHESS 4.5
(Slate & Atk in, 1977) is cailed iterati ve deepenin g: A complete search , investigating all legal
moves (subject to alpha-beta pruning), Is done to depth 2, returning a move. The search Is
then redone to depth 3, again to depth 4, and so on until a preset time limit is exceeded. For
efficiency, Information from earlier iterations is saved for use In later ones. Running on the
very fast COC Cyber 1 76, the program searches to an average depth of 6 plies in
tournament play, with search trees averagIng 600,000 nodes (Newborn, 1976). It Is the
first program to have achieved an Expert rating In human play. In the fall of 1 978 a new
version, CHESS 4.7, was reportedly rated 2160 (Levy, 1979); Master ratings begin at 2200.
It remains an open question how much str onger the program can become.

Ordering of Search

The Shannon paradigm did not specify any particular order in which the nodes of the
search tree were to be explored or in which moves from a given node were to be considered.
For efficient use of space, the order of node expansion Is usually depth-first; a depth-first
algorithm needs to store explicitly only those nodes on the path It is currently investigating
and not the parts of the tree where search has bee n completed. -

With the invention of alpha-beta pruning, the order of considerIng moves within a
depth-fIrst search became highly signIfIcant, if the order Is Idea l, then In a tree with

branching factor b the number of nodes that must be examined at depth d is reduced from bd

to only about 2bd/2, (See Art icle C5b.) For example, Shannon’s estimated iO° chess

positions at depth 6 would be reduced to around 50,000. It also follows that, fo r a constant
number of tip nodes examined, correct ordering of tile moves for alpha-beta cutoffs would
allow the search depth to be roughly doubled. In general, the desired ordering is one in
which the first move considered at a position is the best move for the player whose turn it Is.
Usually, of course, there is no method guaranteed to achieve this ordering, for if there were ,
it would enable moves to be chosen with no search at all. Several heuristics have been

used, however, to try to approximate optimal ordering.

Perhaps the simplest Idea for move ordering is the fixed-ordering method mentioned in
Article C5b: For each move from a node, generat e a new node for the resulting position,
apply the static evaluation function to the position, and order the nodes according to this
preliminary estimate. For greater efficiency, several programs have used a separate
function for move orderIng, which applies to the move Itself Instead of to the position that
results from It (Greenblatt, 1967; Berliner , 1974 , p. 11-16; Adelson-Velskiy, 1976). In either
case the game tree is explored by an ordered dept h- first search (Article C3a).

A fuller basis for choosing which move to consider first Is provided by Slate and Atk ln’s
iterative deepenIng technique, which makes repeated depth-fIrst searches. Each iteration
constructs a line of play, down to its depth limit, consisting of apparently beet moves. The
following Iteration, goIng one ply deeper , thus has available an estImated best move from
each position along this line of play. (See Slate & Atkin, 1077, pp. 102-103.) 

- — - -- ----- .- —.. 
~~~~~~~~~~~~~ — - -- 

~~~~ 
-
~~~ - - 

~ —~
--
~~

- -

64 Al Handbook

A further approach to move ordering makes explicit the Idea of a refutation m ove : For
each move that is not a best move , it should be shown as quickly as possible that the move
is bad. To do tills , strong replies should be considered first , which may refute the move
proposed. Typical implementations consider all capturing moves first, and then consider kille r
moves. The idea here, called the killer heuristic , is that if a move has served as a refutation in
some prevIously examined position that is similar to the current one, it is likely to be a
refutation In the current position too. For more on the killer heuristic and other refutation
technIques, see Slate and Atk in (1977) , Adelson-Velskiy (1976), Gillogly (1972), and Frey
(1977).

Once the moves have been ordered at a given node and the search has moved
downward, following the move that seemed best , it niay turn out that this move is actually a
very bad one for reasons that wore not apparent earlier. Since accurate move ordering Is
important to maximizing alpha-beta cutoffs , it might be worthwhile at this point to go back ,
reorder the moves , and start again with a diffe rent estimated best move. Such a procedure ,
called dyn amic ordering, was investigated by Slagle and Dixon (1969), using the pain e 01 $

kalah. They reported a modest improvement over fixed ordering for trees of depth at l,’ast
6. On the other hand, Berliner ’s chess program experienced a serious increase i - - -

~
- rig

time when dynamic ordering was used (1974 , p. IV-14). A procedure somewhat -

dynamic ordering was also used by Samuel (1967).

If dynamic ordering is carried to its limit , so that reordering is considered every a
node is expanded instead of only under more limited conditions , the search proce~ In
effect changes from depth-first to b~st - f i r s t . That is , the move considered next (or tile
position to which it leads) is on some estimate the most promising in the entire search tree
generated so far , subject to whatever depth limit exists. Nilsson (1968, 1971) implements
this idea by adapting his algorithm for best-first AND/OR tree search (C4) to game trees.
Harris (1975, 1977) suggests another adaptation, In which the motivation of maximizing
alpha-beta pruning no longer plays a role and Instead the objective is to expand the most
active positions first, using a thorough quiescence analysis rather than a depth limit as the
criterion for search termination.

Width of Search

The techniques discussed so far are consistent with the idea that all legal moves from
a position must be examined , at least sufficIently to establish that they can be safely pruned
by alpha-beta. This consideration of all legal fllOVO5 is referred to as full-width searching.
Some of the earliest programs used a full-width search for simplicity; strong current programs
use It because of the great difficulty in determining, without search , which moves can be
safely ignored (Turing, 1953; Kister et aI., 1957; GilIogly, 1972; Adelson-Veiskiy et al.,
1975; Slate & Atk ln , 1977). The problem, of course , is that an excellent move may look very
poor at first sight.

Yet the average number of legal moves from a chess position Is at least 30, ~nd even
with a maximum of alpha-beta pruning the tree grows exponentially. Making the search more
selective was Shannon’s second requirement to change a program from Type A to Type B.

• Many people have been convInced that such selectivity Is essential to a strong chess
program, both In order to increase search depth and to permit more sophistIcated evaluation
of the nodes remaining in the search tree. BerlIner , for example , has advocated reducing the

-

-

~~

.

I

____________- - - • -,

~~~~~~~~~

- - - - - - - - _ _ _ _ _



S

Search 65

total search tree size to at most 5000 nOdes, with a branching factor of less than 1 .9
(1974. p. 1-16). Although some reconsideration of these ideas has been prompted by the
success of CHESS 4.7 using full-width search, it appears that that program Is still weak at
long endgame sequences (see Berliner , 1978a; Michie & Bratko, 1978). Moreover , there are
other games for which it is even clearer that full-width search Is not the answer. For the
game of go , for exam ple, the average branching factor has been estimated at perhaps 200
(Thorp & Walden, 1~~?O), and for backgammon , where legal moves depend on the throw of the
dice as wail as the board position, the factor Is over 800 (BerlIner , 1977a).

Various devices nave ~~~ treed in the effort to increase the selectivity of the search
without missing good moves. Sorno arc conceptually simple , introducing little or no new
chess-specific knowledge into thn program. Others attempt to formulate and use chess
concepts as sophisticated as thos~ a chess master might employ. The remainder of this
section reviews mainly the earlier sear~ i-controliing devices. The following section mentions
worx , some of which moves outside the Shannon paradigm, in which the effort to capture
expert chess knowledge beco.nes primary. $ -

Forward pruning. One way of limiting the number of moves to be considered introduces
no new complications: Simpiy generate all legal moves at a position, use a fixed-ordering
scheme to sort them according to their apparent goodness, or plausibiluy , and then discard all
but the best few moves. Such a technique , called plaus ible-move gene ration or fom war d
p runing, was used by Kotok (1962) and Greenblatt (1967); see also Samuel (1967). A
further feature of these programs , sometimes called tapered forward pruning, was that the
number of moves retained was a function of tile depth at which they we re generated. For
exampie, Greenblatt’s program in tournament play retained 1 5 moves from a position at either
of the top two levels of the tree, 9 moves at the next two levels, and 7 moves thereaf tar.
These figures could be increased in special cases--for example, to be sure that moves of -

more than a single piece were consIdered.

Another form of forward pruning, distinct from plausible move generation , operates not
at the time when moves are originally generated but later, when one of these moves (or the
position to which it leads) Is being selected for further exploration. At this point a preliminary
estimate of the value of the move or position may already have been made by the move-
ordering scheme. If this estimate is outside the limits alpha and beta, the currently known
bounds on the outcome of the entire search (sea C5b), the node is pruned without further
invest igatIon. It is possible, of course , that the actual backed-up value of the node would
have turned out to be between alpha and beta. in that case a good move may have been
mIssed. (See Samuel, 1967; Berliner, 1974, p. IV-13.)

Still another basis for forward pruning has been explored by Adelson-Velskiy et al
(1976). They observe that KAISSA’ s search trees include many lines of play that a human
would consider absurd, not necessarily beca use the moves are bad a priori, but because the
human player has already considered and rejected the same moves in an analogous position.
The proposal , then, is to remember moves that have been found to be absurd (on some
definition) and to reject them In other positions too unless there has been an appropriate
change of circumstances. In effect , this method of analogies involves trying to establish
conditions under which a refutation is guaranteed to be effective. Then the line of play
constituting the refutation would not need to be explored separately every time it is
applIcable. (See Frey, 1977, p. 68.)

- - T~TT - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



66 Al Handbook

Goal—directed move generation. Returning to the initial generation of moves, there is
another kind of plausible move generator tllat comes closer to mimicking the way that humans
might decide which moves are worth considering. instead of generating all legal moves and
discarding some, this approach does not generate moves at all unless they seem relevant to
some goal. The earliest step in this direction was Bernstein ’s program (1959), which
contained a sequence of board featu i’ .s to be tested for and a procedure for generating
moves in response to each feature that was present. The first few tests In the sequence
were (1) is the king in check? (2) can material be gained, lost , or exchanged? and (3) is
castling possible? A maximum of 7 plausible moves was returned. Questions later in tile
sequence were not asked If earlier questions caused the maximum to be reached. Searching
to a fixed depth of 4 ply, the program generated trees with about 2400 tip nodes.

More explicitly goal-directed move generation was included in Newell , Shaw , and
Simon’s 1958 chess program (Newell , Shaw, & Simon, 1963a; Newell & Simon, 1972) .
indeed, the entire program was organized in terms of goals , altllough only three--material ,
center control , and piece development--were actually implemented. At each turn , the
program began by making a preliminary analysis to decide which of the goals were relevant
to the situation; these were entered , in order of importance , on a current goal-list. it was
intended, in a more fully developed program , that as the game progressed the goals of center
control and development would drop out , since they are important ma inly in the opening, and
would be replaced by others more appropriate to later phases of the game.

Each active goal In the Newell, Shaw, and Simon program was responsible for ~- 
- -

generating relevant moves at the first level of the tree. In addition, each goal contained its

L 

own separate generator for moves at deeper levels , its own criteria for whether a position
was dead, and its own static evaluation function. The search proceeded , in a highly selective
manner, until the tip nodes were dead with respect to all active goals. Static evaluations
with respect to the various goals were combined lexicographically, so that the highest
priority goal was dominant and the others served only as tiebreakers. Newell and Simon
report that the program’s average search tree contained only 13 nodes--with no apparent
loss in playing power compared to other programs up to that time (1972, p. 694).

Knowledge-based Programs

The Bernstein end Newell, Shaw, and Simon programs were early efforts to introduce
significant chess knowledge, organized in human terms , to limit brute-force search. Tile
actual knowledge was very sketchy; apparently neither program ever won a game (see
Newell & SImon, 1972, pp. 677, 690).

An attempt at fuller use of chess knowledge was made in Berliner ’s program . CA PS-Il
(19 74, 1977b), Much of tile work involved developing a representation suitable for use in
selectively generating moves , making preliminary evaluations of the moves so proposed , and
describing the actual consequences discovered when a move was tried. The moves
generated depend on the current goal state, which may be King in Check , Aggressive ,
Preventive Defense , Nominal Defense , Dynamic Defense , or Strategy. In contrast to the
Newell, Shaw, and Simon program, the goal states ar e mutually exclusive, and state
transitions occur dynamically as the tree is searched , in accordance with a complex
flowchart. An Important feature of the program , the Causality Facility , relates to both move
generat ion and move ordering, as well as to pruning in some cases. The problem it attacks is



-~~~

t
Search 67

a general one In tree searching: When a path has been explored and found unsatisfactory,
most programs have no way to diagnose what went wrong and use this information in decIding
where to search next.

The bas ic search algorithm in CAPS-il is depth-first , With minimaxing and alpha-beta
prunlng. The Causality Facility operates as a refinement on this search. A first new feature is
that, whenever a value Is backed up in the search tree as a tentative minimax value, certain
information is accumulated about the consequences of the move or moves that produced the
value, The data structure in which the information is stored Is called a Refutation Description.
As the basis for making use of the Refutation Description, the program uses a variable
representIng the expected value of the position at the root of the search tree; this value,
which may be updated during the search, lies somewhere between the bounds given by alpha
and beta. Now, the tentative value newly backed up to a node can be compared wIth the
expected value, if the comparison is unsatisfactory, the Causality Facility uses the -

. -

Refutation Description to decide whether the last move tried from the node could have been
responsible. It generates a list of alternative moves from the node, with the aim of avoiding
the unsatisfactory result. These moves are compared with the list of moves from the node
that had been generated earlier but which have not yet been tried. The comparison Is used
to reorder moves already on the untrIed list and, depending on the state the program is in, to
add new moves to the list and to prune old ones.

Whereas Berliner ’s program plays the full game of chess, there are several other
recent programs which, In their emphasis on representing chess knowledge, limit their task to
solving problems that Involve only selected aspects of the game. Two of these are the
programs of Pltrat (1977) and Wilkins (1979). In each, the task Is to find a line of play that
wins material , beginning from a given middle-game position. The approach in both programs is
to work backward from the goal of winning material to a structure of subgoals that
constitutes a plan. (See Planning.) Wilkins ’s program, PARADISE , for example , has as a main - .1
theme the expression of chess concepts, like ma king a square safe for a piece or safely - -

capturing a piece, In terms that can be used as subgoals and eventually reduced to specific
moves. Initially, a plan is based not on sear ch but on an extensive analysis of the originally
given position; It may contain conditional branches depending on general categories of moves
with which the opponent might reply. The general plan is then used to guide search,
generating a very small tree. Moves considered for the program to make are Only those
relevant to the current subgoal; for the simulated opponent, all reasona ble defensive moves
are considered. if search shows that the plan has failed, a causality facility similar to
Berliner’s is used to analyze the diffIculty and suggest a new plan.

Both the Pitrat and the Wilkins programs have succeeded In solving problems where the
winning line of play goes to a depth of around 20 ply. Pitrat reports, for a set of 11
problems, that search tree sizes ranged from about 200 to 22,000 nodes; computation time
varied from under 3 seconds to about 7.5 minutes. Wilkins ’s PARADISE generates smaller
trees but uses more time; for 89 problems solved, the number of nodes in the search tree ran
from a minimum of 3 to a maximum of 215, and time to find the solution varied from 19
seconds to 33 mInutes. Wilkins also reports a good success rate compared to previous
programs tested on the same set of problems, including Berli ner ’s program, GiIlogly’s TECH ,
and an earlier version of CHESS 4.5, The programs other than PARADISE, however, were
tested with a time limit of only 5 minutes per problem.

A final example of the use of chess knowledge to solve a class of problems is the work

I

-.--- 

— — ,—.. —-~~ ‘—t_ ~ - ,.- — ‘- —



.-

~~~~

- -

~~

-

~~~~~~~~

- —-

~ 

- - --- -- - ---

~~~~~~~~~~~~~

68 Al Handbook

of Donald Michie and his colleagues on chess endgames (e.g., Bratko, Kopec , & Michie, 1978;
Michie & Bratko, 1978). Here each combination of pieces with which the endgame may be
played is treated as posing a separate probiem, One problem, denoted KNKR, Is to defend
with king and knight against king and rook , starting from any of some 3 million legal positions
involving only those pieces. The objective is to provide the program with enough knowiedge
about this specific class of chess problems to achieve theoretically correct play, even in
situations where chess masters sometimes err , and to accomplish this using only a moderate
amount of search.

The program’s knowledge is encoded in a data structure called an Advice Table , within
which patterns occurring on the board may be described. Each pattern has an associated
list of goals, or “pieces of advice ,” In the order in which they should be attempted. The
object then becomes to find a solution--in the sense of a solution subtree of an AND/OR tree
(C2)--to the problem of satisfying one of the goals. Unlike a standard AND/OR tree search , . -

however, tile “advice ” includes not only a definition of when tip nodes should be considered
terminal, but also constraInts that every intermediate node in the solution tree must satisfy.

The amount of search required to find a solution using an Advice Table depends on how
much knowledge the table contains. If the only goat provided were avoidance of mate , a
search to the Impossible depth of 85 ply would be needed to find the best defense from
some positions. With the additional advice not to lose the knight and to keep king and knight
together, search to about 10 ply is sufficient. With the further refinements included in the
actual Advice Table, the program is reported to play the KNKR en dgame at master level using
only a 4-ply search.

Ref srences

See Adeison-Velskiy, Arlazarov, & Donskoy (1975), Berliner (1973), Berliner (1974) ,
Berliner (1977a), Berliner (197 7b), Berliner (1977c), Berliner (19 78a), Berliner (1978b),
Bernstein at al. (1959), Bratko, Kopec, & Micilie (1978), Charness (1977), Frey (1977) ,
GlIlogly (1972), Greenb latt , Eas tlake , & Crocker (1967), Griffith (1974), Harris (1974), Harr is

-
(1976), Harris (1977), Hearst (1977), Kister et al. (1957), Kotok (1962), Levy (1979),
Michie (1977), Michie & Bratko (1978), Mittman (19 77), Newborn (1976), Newborn (1978),
Newell, Shaw, & Simon (1963a), Newell & Simon (1972), Nilsson (1969), Niisson (1971),
Pitrat (1977), Samuel (1963), Samuel (1967), Shannon (1950) , Slagie & Dixon (1969),
SIagIe & Dixon (1970), Slate & Atkin (1077), Thorp & Walden (1970), Turing (1953), and
W Ilkin s (1979).

- . ~~~~~~~~~~~~~~~~~~~~~~~~


~~~~~~~
I T

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Search 69

0. Example Search Programs

Dl. Logic TheorIst

The Logic Theorist (LI) was a program written by Allen Newell, J. C. Shaw, and H. A.
Simon in 1956, as a joint project of the RAND Corporation and the CarnegIe Institute of
Technology. It was one of the earliest programs to investigate the use of heuristics In
problem solving. The term heuristics , as used by Newell, Sha w and Simon , refer red to “the
complex processes . . . that are effective in problem-solving.” They stated,

We are not Interested in methods that guarantee solutions, but which
require vast amounts of computation. Rather, we wish to understand
how a mathematician, for example, is able to prove a theorem even
though he does not know when he starts how, or If, he is going to
succeed. (Newell, Shaw, & Simon, 1 963b, p. 109)

Heuristics were thus identified with processes “that may solve a given problem, but offer no
- -

guarantee of doing so” (p. 114; see also Overview).

In descriptIons of the Logic Theorist program, the heuristics discussed by Newell, Shaw,
and Simon relate princIpally to limiting the search space by means of an apt problem
formulation. With in the defined space , the search was blind except for some minor
select ivity In the select ion of opera tors (see C3a).

The problem domain of the Logic Theorist Is the proof of theorems In the propositional
calculus (see Repreaentation.Logic). The basis is Whitehead and Russell’s Princlpla
Mathematica, from which both axioms and theorems to be proved were taken. There are
five axioms, as follows:

r ~~, (p v p)’p
2. p ~ (q v p)
3. (p v q)~~(q v p)
4. (p v (q v r))~~(q v (p v r))
5. (p ~ q) ~ (Cr v p) D (r v q))

Some typical theorems that LI was given to prove include:

2.01. (p a —p)~~’~p
2.46. -(p v q) ~ —p
2.31. (p v (q v r)) a ((p v q) v r)

The numbering of the theorems Is taken from Whitehead and Russell. In some cases, the
data given the program Included not only the axioms but also previously proved theorems
from that work. When all earlier theorems were Included with the axIoms, the program
succeeded In provIng 38 of the first 52 theorems in Chapter 2 of Prlncipia Mathematica , in
the sequence given there.

The program operates by reasoning backward , fr om the theorem to be established, to the
axioms and given theorems. Three operators ware provided for reducIng the theorem to be
proved , let us say X to an axiom or theorem. These operators were:

- -
~~~~~~~~~~~~~~ r .



70 Al Handbook

Detachment: To show X, find an axiom or theorem of the form A ~ X, and
transform the problem to the problem of showing A.

Forward chaining: To show X where X has the form A ~ C, find an axiom or
theorem of the form A ~ B, and transform the problem to the problem of
showing B ~ C.

Backward chaIning: To show X where X has the form A ~ C, find an ax~om
or theorem of the form B ~ C, and transform the problem to the problem of
showing A ~ B.

Since the axioms and given theorems contain variables , consideration must be given to
the means for deciding whether a problem has in fac t been reduce d to something known.
The question Is whether a current problem expression X is an instance of an axiom or known
theorem. The test, called the Substitution Test, uses two ru les of Inference distinct from —

those reflected in the operators:

Substitution: A variable in a theorem may be replaced, in all its
occurrences throughout the theorem, by an expression. For example,
substitutIng the expression “p v q” for the variable “p” transforms

p~~(q v p)
into

(p v q)~~[q v (p v q)].

Repiacement: The connective “a” is interchangeable with Its definition.
That is, If p and q are expressions, then

p~~q
can be replaced by

— p v q
and vice versa.

As well as being used to determine whether a proof is complete , the substitution test is also
— essential for determining what applications of the three operators are possible with respect

to a given problem expression.

The general algorithm used by the Logic Theorist Is a blind, breadth-first state-space
search using backward reasoning. The initial state corresponds to the original theorem to be
proved. To test whether an expression has been proved, the program applies the
substitutIon test, pairing the problem expression with each axiom and assumed theorem, In
turn. if substitutIon fails, the expression is placed on a list of open problems; problems are
selected from this list to become the current problem in first-In, first-out order.

To a problem selected from the list, each of the three operators is applied, in fixed
order and in all possible ways, to generate new open problems. The search terminates with
success as soon as a single problem is generated that passes the substitution test , since
this means that a path has been completed between an axiom and the original problem. The
search fails If It exceeds tIme or space limits, or if It runs out of open problems.

An example of a case in which the latter occurs is the attempted proof of the theorem

_____ — ~~~~-- -~~
—
~~~~~~~~~~~~

~-

•

Search 7 1

p or ———p .

To succeed with this proof, LT would have needed more powerful operators; this particular
problem required the ability, which LI lacked, to transform a problem to a set of subproblems ,
or conjunctive subgoals, whIch alt had to be solved In order to solve the orIgInal problem.

Thero are some qualifications to the preceding general description of IT. One concerns
the statement that each operator is applied to the current problem In every possible way,
that is, that the current problem expression Is matched against every axiom and assumed
theorem to determIne the applicability of any of the operators to that expression-axiom pair.
In fact, the program attempted a match for the purpose of discovering an approprIate
substitution only If the pair had passed a test indicating equality of certain gross features ,
such as the number of distinct variables in each. This test for similarity occasionally .

-

rejected a pair for which a substitution in fact would have been possible, thus excluding a - -
-

proof the program would otherwise have found. Overall, the utility of this similarity test was
considered rather marginal.

Some other additions, apparently made in a later version of the program (see Newell &
Simon , 1972, pp. 125-128), included (a) ordering the open problems , taking up those
Involving simpler expressions first instead of proceeding in a strictly breadth-first order, and
(b) rejecting some subproblems entirely as too complicated or apparently unprovable. In the F .
implementation of these features, the latter appeared to be the more effective measure in
reducing search effort. There was also experimentation, as mentioned previously, with the
number of theorems that could be assumed as given in addition to the basic axioms. The ‘ —

conclusion on this point was that “a problem solver may be encumbered by too much
information, just as he may be handicapped by too little ” (Newell & Simon, 1972, p. 127). - :

Ref •r•ncis

See Newell, Shaw, & Simon (1963b), Newell & Simon (1972), and Whitehead & Russell
(1925).

72 Al Handbook

D2. General Problem Solver

The General Problem Solver (GPS) was developed by Allen Newell , J. C. Shaw, and H. A.
Simon beginning In 1957. The research had a dual intention. It was aimed both at getting
machines to solve problems requiring intelligence and at developing a theory of how human
beings solve such problems. GPS was the successor of the authors ’ e~riier Logic Theorist
program (Article Dl), whose methods had only a slight resemblance to those used by humans
working on similar problems. Development of GPS continued through at least ten years and
numerous versions of the program. The final version , described in detail in Ernst and Newell
(1969), was concerned with extending the generality of the program , not with the
psychological theory.

The name “General Problem Solver ” came from the tact that GPS was the first problem-
solving program to separate its general problem-solving methods from knowledge specific to
the type of task at hand. That is, tile problem-solving part of the system gave no Information
about the kind of task being worked on; task-dependent knowledge was collected in data
structures forming a task env ir onr ’zen t . Among the data structures were objects and op erators for
transforming objects. A task was normafly given to GPS as an initial object and a desired
object, into which the initial object was to be transformed. GPS objects and operators were
similar to the states and operators of a state -space problem representation (Article Bi).

The general problem-solving technique introduced by GPS , however , does not fit neatly
Into either the state- space or the problem-reduction representation formalisms. It di f f ’~
from a standard state-space search (e.g., Article lid) In the way it decides what path to -

next. This technique, called means-ends ana/ysis , is a major theoretical contribution of the
program. It assumes that the differences between a current object and a desired object can
be defined and classified into types and that the operators can be classIfied according to
the kinds of difference they might reduce. At each stage , GPS selects a single relevant
operator to try to apply to the current object. The search for a successful operator
sequence proceeds depth first as long as the chosen operators are applicable and the path
shows promise. Backup is possible if the current path becomes unpromising--for example, if
eliminating one difference has introduced a new one that is harder to get rid of,

An important feature of means-ends analysis is the fact that the operator selected as
relevant to reducing a difference may in fact be inapplicable to the current object. Rather
than rejecting tile operator for this reason , GPS attempts to change the current object into
an object appropriate as input to the chosen operator. The result of this strategy is a
recursive, goal-directed program that records the search history In an AND/OR graph (Article
B2) with partial development of nodes (Article C3a).

Goals and Methods

The most important data structu re used by GPS is the goat. The goal is an encoding of
the current situation (an object or list of objects), the desired situation, and a history of the
at tempts so far to change the current situation into the desired one. Three main types of
goals are provided:

1. Transform object A into object B.
2. Reduce a difference between object A and object B by modifying object A.
3. Apply operator Q to object A,

-~

C

Search 73

Associated with the goal types are methods , or procedures, for achieving them. These
methods, shown In a simplified version in Figure 1, can be understood as problem-reduction
operators that give rise either to AND nodes, In the case of transform or apply, or to OR
nodes In the case of a reduce goai. The Initiai task presented to GPS Is represented as a
transform goal, in which A Is the Initial object and B the desired object.

TRANSFORM
A TO B

REDUCE DIFFER~~~E ~~~TRANSFORM
BETW EEN A AND B , A’ TO B
GIVING OUTPUT A’

REDUCE DIFFERENCE
BETWEEN A AND B A PPLY OPERA TOR Q TO A

SELECT A RELEVINT OPERATOR Q REDUCE DIFFE~~~CE A~~~Y Q TO A” ,
AND APPLY IT TO A BETWEEN A AND THE GIVING OUTPUT A’

GIVING OUTPUT A’ PRECONDITIONS FOR
Q, GIVING OUTPUT A”

Figure 1, The three GPS methods for problem reduction.

The recursion stops If the goai is primitive--that is, If for a transform goal there Is no
difference between A and B; and if for an apply goal the operator Q is immediately
applicable. For a reduce goal, tile recursion may stop, with failure, when all relevant
operators have been tr ied an d have fa il ed.

Select ion of Operators

In trying to transform object A to object B, the transform rlethod uses a matching
process to discover the differences between the two objects. The possible types of
dIfference are predefined and ordered by estimated difficulty, for each kind of task. The
most difficult difference found is the one chosen for reduction. A domain-dependent data
structure called the Tab.?. of Conn.ction~ lists the operators relevant to reducing each
difference type.

D.pth Bounds

Several heuristics are provided to prevent GPS from following a false path indefinitely.
Some of the bases on which a current goal may be abandoned, at least temporarily, are the
following:

1, Each goal should be easier than Its parent goal.

- -

~~~~~~~~~~~~~~~~~~~~~~~~~



74 Al Handbook - :

2. Of a pdir of AND nodes r~’prt~~~nting subgoals generated by transform or —

apply, the second subgoal attempted should bo easier than the first.

3. A nowly generated ob I~’ct should not bo much larger than the objocts
occurring in the topmost goal.

4. Once a goal has boon gener ated , the identical goal should not be
generated again.

An Example

1 ho first task environment to which GPS was applied was the domain of the Logic
Theor ist: proving theorems In th~ proposit ional calculus. The initial and desired objects wore
expressions , one to be transformed Into the other by means of operators repr~sonting rules
of Inferonce. There wore twelve opor.~tors altogether , including the following rules. (Tile ‘ 

-
symbol “ .

~~ >“ moans “may be rewritt en as.”)

Rule 1. A v B  ~~
) R v A

A n t i  ~~
) t i n A

Rule 5. A v 13 <~~ > — (— A A -.13)

Rule 6. A ~ (3 <as > —A v B ‘

Six possible difference types wore recognized:

(a) occurrence of a variable in one expression but not the other ,
(b) occurrence of a variable a differ ent number of tImes In the two

expressions ,
(c) difference in sign,
(d) difforonco in binary connective ,
(e) difference in grouping, and
(f ) difference in position of components.

lhø list just gi’ on is in decreasIng ordor of assumed difficulty. Every difference betw een
main expres&ens , however , was considered more difficu lt than any difference between
aub•*pr•ssions.

W ’ h  thi ~. background, a trace (slightly simplif ied) of GPS’s performance on a simple
•. ~‘~‘u can be given. The problem is to transfor m tho inItial oxpression

B A (—P 0) ,

- - ‘i’ Ui.. desired expression

(Q V P ) A R ,

a s  a $hi”.#.fl ~~~~~~

--



______________________ - -

Search 76

Goal 1: Transform 1.1 int o 10.
Goal 2: Reduce positional dii terenco botwoon LI and LO.

Goal 3: Apply Rub 1 to Li.

Return L ~: ( P 
_
~ i.~ ) ‘ B

Goal 4: Transform I .~ into [0.
Goal 5: Reduce dii b ronco in connect ive between

loft suboxpross ions of I ‘ and 10.

Goal 6: Apply Rule b to loft  part of ~~
Goal 1 Reduce dii f~ r~nco in connective

h ot we ol l lof t  part of t ~ and
precondition fo r Rule 6.

Reject goa1 ~
‘ as no eas ier than goal 6.

Goal 8: Apply Rule 6 to loft part of L~~.

Return L 3 (P v 0) -s B

Goal 9: Transform 13 into LO. - -

Goal 10: Reduce positional d iffe rence
butwoon bott parts of ~l :t ird 10.

Goal 11: Appl~- Rule 1 to loft  part of L~t -

Return L4 : ~0 v i~) ~
Goal 1 .~ Transform 14 to I d

No difference exists , so problem is solved.

Th. Problem of Generality

GPS was intended to model t~cn~ rality in problem s~~v in~ through use of the broadh.
applicable techniques of he urist ic sea rch , and (ho st i a t o t~~ of moans—e nds ~nal~ sis ii

particular. The iniplementat loir of t iroso (r ’chtr iqi ios was dependent oil the i n t er  ii~ l
representation of obj ects and operators. I hose r opt trstrn tat lons , in early versions of ~~~~wore nicely suited to Ionic tasks like the o ~ tmplo above. Lint they were inadequate fo r
many other kInds of heuristic so,u ih problems. L1trf ~rii t nat’ s o ~tonsions to t ’ ~’ pi osir am
(Ernst & Newell , I [1St)), GPS had in fact so lved only two problems outside the Ionic doninirl

The object of t m at ’ s work ~ us to e ~t1’iid the number of kinds of problems thn~ I.PS
could handle while holding Its po~ O t  .1 t a .-ons t ant lc~ o - ~lno of his goiroraIt :at ior~. v. as iii

the representation of objects.  I arlio r , S des ,  ~d oh oct had had to be specif i ed b~ giving I t s
exact form. Forms containing variables and lists of forms could be used if necessary . tint

— - .



76 Al Handbook

these too were inadequate for representing symbolic Integration problems , in which the
desired object is any form whatever that does not contain an integral sign. Hence tile
description of a desired object by a list of constraints was introduced.

Another change was in tile rcprosontat ion of operators , originally specified by giving
the form of the input object and the form of the resulting output object. For some kinds of
problems , it was desirable to have other tests of applicability besides the form of the Input
object , and to be able to describe the output obje ct as a function of the input. A third
change enabled GPS to deal with unordered sets of symbols , eliminating the need for special
operators to permute their elements.

The generalized program succeeded in solving problems of 11 different kinds including
symbolic integration , resolution theorem proving, and a variety of puzzles. Each
generalization, however , entailed changes in the ways tile problem representations could be
processed , and these led in turn to deterioriation with respect to the kinds of differences
that could be detected. Tho only representable differences became “iocal” ones. An
example of a global difference , which GPS could no longer recognize , was the total number of
times a variable occurred in a logic formula. Consequently , theorem proving in tile
propositional calculus was not among the eleven tasks that the final version of GPS could do.

In the task domains in wllich GPS did succeed , it could solve only sim ple problems; and
those , less efficiently than special-purpose problem solvers. If a long search was required ,
it ran out of memory space; and even easy problems , if they needed objects as cornDiex as a
chess position, quickly exhausted memory on a maclline with 65K words. But GPS was not
expected to be a performance program. What it yielded , In its authors ’ view, was “a series
of lessons that give a more perfect view of tile nature of problem solving and what is
required to construct processes that accomplish it” (Ernst & Newell, 1 969, p. 2). Although
additional generalizations , such as game playing, were considered feasible , the authors
concluded that GPS needed no further programming accretions and recommended that it be
laId to rest.

Ref er•nces

See Ernst & Newell (1969), Newell & Ernst (1965) , Newell , Shaw, & Simon (1960),
Newell & Simon (1963), and Newell & Simon (1972).

-- - -~~~~~~~ ----~



Search 77

03, Gelernter ’s Geometry Theorem-proving Machine

Herbert Gelerntor ’s geometry theorem-proving machIne was a program written in 1 959
at the IBM Research Center In New York . The program was written In an extended FORTRAN.
t he  FORTRAN LIst Processing Language , and implemented on an IBM 704 computer. Ihe
purpose of the program was to solve problems taken from high-school textbooks and final
examinations in plane geometry. As with Newell , Shaw , and SImon’s Logic Theorist , which
proved thoorems in the propositional calculus, the fact that there were algorithms for solving
problems In these domains was considered irrelevant , sInce the object was to explore tile
use of heuristic methods in problem solving.

Tile formal system within which tile geometry program worked contained axioms on
parallel lines, congruence , and equality of segments and angles. Th Is set of axioms , w hich
was not meant to be either complete or nonredundant . was along the lines of an elementary
textbook. The axioms played the role of p ro~krrz-rei1uction operators. Some examples are:
(a) To show that two line segments are equal , show that they are corresponding elements of
congruent triangles; (b) to show that two angles are equal, show that they are both right
angles; and (c) to show that two triangles are congruent , show the equality of a side and
two angles in corresponding positions , or of an angle and two sides. Tile operators for
establishing congruence split the problem into three subproblems , each to be solved
separately by showing equalIty for one pair of elements. Newell and Simon (1972 , p. 136)
indicate that the geometry machine was the f irst program that was able to handle con/u nct iv
subgoals. The program works backwards from the theorem to be proved , recording its
progress in what amounted to an AND/OR tree (Article B2) .

Some examples of problems solved by the program were tile following:

1. Given that angle ABD equals angle DBC, that segment AD is perpendicular to segment
AB, and that segment DC is perpendicular to segment BC, show that AD equals CD.

d - -

Figure 1. DIag ram for probl em 1.

2. Given that ABCD is a quadrilateral , with segment BC parallel to segment AD and with
BC equal to AD, show that segment AB equals segment CD.

- C

FIgure 2. Diagram for problem 2.

— ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~-



A problem was given to the program in the form of a statement describing the premises
and the goal. A proof was a sequence of statements giving the reduction of the goal to
trivial goals--ordinarily, goals to establish art already established formula. One feature used
to reduce the search effort needed to find a proof was the recognition of syntactic symmetry.
Some examples of symmetric pairs of goals are the following:

a. If d(x,y) is the distance from point x to point y, then d(A,B) = d(C,D) is
symmetric with d(0,C) d(A,B).

b. If AI3CD is a parallelogram and point E is the intersection of its diagonals AC
and SD, then d(A,E) d(E,C) is symmetric with d(B~E) d(E,D).

The recognition of symmetry was used in two ways. First , if a given goal was ever reduced
to a subgoal symmetric with it , the subgoal could be rejected as representing circular
reasoning. Second, if parallel goals A and B were syntactically symmetric and goal A had
been established, then goat B could be established by symmetry--in effect by saying, for the
second half of the proof, “Similarly, B.”

The most notable feature of the program, however, was an additional part of the -: -
-

problem statement used to avoid attempting proofs by blind syntactic manipuistion alone.
This input was a diagram, similar to Figures 1 and 2 (although specified by lists of ~~

- 
~

coordinates), of the points and line segments mentioned in the theorem. The particular input
figure was chosen to avoid spurious coincidences and reflect the greatest possible
generality. Whenever a subgoal was generated , it was checked for consistency with the
diagram. If false In the diagram , the subgoal could not possibly be a theorem and therefore
could be pruned from the search tree. A slight qualification is ti-tat finite precision arithmetic,
applied to tile diagram, occa sionally caused a provable subgoal to be pruned erroneously; but 

- 

-

It was reported that the program had found other paths to the solution in such cases. It was
estimated that the USO of a diagram , together with the discard of subgoals representing
circular reasoning, eliminated about 995 out of every thousand subgoals.

The diagram also served a second purpose: It provided an additional criterion by which
a problem could be considered p rimit ive. For example , a rigorous proof of the theorem in
problem I would require showing tllat DB is a line segment and that BCD and BAD are
triangles, The axioms needed would have been (a) if X and V are distinct points, then XV is a
line segment; and (b) if X, Y, and Z are three distinct non-colhinear points, then XYZ is a
trIangle. For a limited class of such properties , the program did not require formal proof but
rather considered them established it they were true in the diagram. it recorded explicitly
the ass umptions that hed been made based on tile diagram.

The central loop of the program repeatedly selects the next goal to try. Two heuristics
were Included for goal selection. One gave highest priority to c lasses of goa ls, such as
Identitie s, that could usually be established in one step. The second assigned a “distance”
between the goal stat ement and the set of premise statements; after the one-step goals
had been developed, the remaining goals were selected in order of increasing distance from
the premise set.

Once a goal was chosen for development , the action taken depended on its status.
Ordinarily, it would be reduced to subgoals and the subgoals, if consistent with the diagram
but not sufficient to establish the current goal immediately, would be added to the list of

~ -

- ~~~~S ~~~~~~~~ 
-



Search 79

goals to try. if no new acc eptable subgoals were generated, the program checked whether
a con struction was possible--a construction being the addition to the premIses of the problem 

- -

of a l ine segment between two existing but previously unconnected points. The new
segment would be extended to its intersections with other segments in the figure. New
points could be added to the premises only If generated by such intersections.

A goal for whIch a construction was found possible was saved--to be tried again later
it all goals not requiring Construction should be exhausted. If the goal was later selected for
a second try , a construction would be made and the problem started over with an expanded
premise set. An example of the use of thIs technique occurs In problem 2, where In
considering the goal AB • CD, the program generated a subgoal of showing that triangles ABO
and COB were congruent. The subgoal makes sense only if a line segment 80 exists, so the
segment is constructed , and the proof eventually succeeds.

References

See Elcock (1977), Gelernter (1959), Gelernt er (1963), Gelernter , Hansen , &
Gerberlch (1960), Gelernter , Hansen, & Loveland (1963), Geler nter & Rochester (1958), and
Gilmore (1970).



80 Al Handbook

04. Symbolic integration Programs

Slagl e ’s SAINT

James Slagle’s SAINT program (Symbolic Automatic INTegrator) was written as a 1961
doctoral dissertation at MIT, The program solves elementary symbolic Integration problems--
mainly Indefinite integration--at about the level of a good college freshman. SAINT was
written in LISP and run interpretively on the IBM 7090.

TI-to kinds of questions Slaglo intended his thesis to address were some of the earliest
questions for Al. They included, for example , “Can a computer recognize the kinds of
patterns that occur in symbolic expressions? Just how important is pattern recognition? . . . - - 

-

Can intelligent problem solving behavior really be manifested by a machine?” (Slagie , 1 961,
p. 9). The domain of symbolic Integration was chosen as a source of well-defined, familiar ,
but nontrlviai problems requiring the manipulation of symbolic rather than numerical
expressions.

The Integration problems that SAINT could handle could have only elementary functions
as integrands. These functions were defined recursively to comprise the following: t..

1. Constant functions.
2. The identity function.
3. Sum , product, and power of elementary functions,
4. Trigonometric , logarithmic , and inverse trigonometric functions of

elementary functions.

Three kinds of operations on an integrand were available:

1. Recognize the integranci as an instance of a standard form , thus obtaining the
result immediately by substitution. Twenty-six such standard forms were
used. A typical one Indicated that If the integrand has the form C” dv ,- the
form of the solution Is (c”)/(ln c).

2. Apply an “algorithm-like transformation ” to the integral--ti-tat is, a
transf ormation ti-tat is almost guaranteed to be helpful whenever it can be
applied. Eight such transformations were provided , including (a) factoring out
a constant and (b) decomposing the integral of a sum into a sum of integrals.

3. Apply a “heuristic transformat ion ”--that Is, a transformation carrying
significant risk such that , although applicable , it might not be the best next
step. The 10 heuristic transformations included certain substitutions and the
technique of integration by parts. One technique that was not Implemented
was the method of partial fractions. 

-

The program starts with the original problem as a goal , specified as an integrand and a
variable of Integration. For any particular goal, the strategy is first to try for an immediate
solutIon by substitution Into a standard form; failing that, to transform It by any applicable
algorithm-like transformation; and finally to apply each applicable heuristic transformation in



~ --~ -~~ ~~~--~~~~- -~~~~~~~~~- - -~~--~~~~~~~ --- ~ -~~~~~~~--~~~~~~~~~-~~~~~~ 

F .

Search 81

turn. Both the algorithm-iike and ti-to heuristic transformations , however, generate new goals ,
to which the same strategy may be applied. The result is an AND/OR graph of goals (Article
82).

The order in which goals are pursued by SAINT depends heavily on what operations can
be applied to them. At tile level of heuristic transformations , the algorithm is an ordered
search: A list, called the Heuristic Goal List , keeps track of goals on which progress can be
made only by applying heuristic transformations--that is, integrands ti-tat are not of standard
form nor amenable to any algorithm-like transformation. To each goal on this list is attached
an estimate of the difficulty of achieving it. The measure of difficulty used is the maximum
level of function composition In the integrand. Other characteristics of the goal, such as
whether it is a rational function , an algebraic function, a rational function of sines and - -

cosines, and the like, are also stored as an aid to determining which heuristic transformations
will In fact apply. The outer loop of the program repeatedly selects the goal ti -tat looks the

— easiest from the Heuristic Goal List , expands it by applying all applicable heuristic , 
-

transformations , and possibly, as a result of the expansion, adds new elements to the
Heuristic Goal List. The program terminates with failure if it runs out of heuristic goals to work
on or if it exceeds a pre-set amount of working space.

An important qualification to this process concerns the use of standard forms and : -

- 

- algorithm-like transformations. As soon as any new goal is generated (or the original goal
read In), an immediate solution of it is attempted. The attem pt consists of , first , checking - . -

whether the intogrand is a standard form; if it is not, checking wi-tether an algorithm-like
transformation applies; and If one does, applying it and calling the immediate solution
procedure recursively on each goal resulting from that transformation. When the recursion 

-

terminates, either the generated goal has been achieved or there is a set of goals--the
generated goal itself or some of its subgoals--to be added to the Heuristic Goal List- During
expansion of a node (one Iteration of the outer loop), now heuristic goals are accumulated in
a temporary goal list; only after expansion is complete are their characteristics computed
and the additions made to the Heuristic Goal List.

Whe never a goal is achieved , ti-to implications of its achievement are immediately
checked. If it is the original goal , the program terminates successfully. Otherwise , it it was
achieved by substitution into a standard form, it may cause the achievement of one or more
parent goals as well. if It was achieved by solution of a sufficient number of its
subproblems , it may not only cause its parent or parents to be achieved in turn, but may also
make others of its subprobloms , which have not yet been solved , superfluous. These checks -

are implemented in a recursive process , referred to as “pruning the goal tree ,” ti -tat is
initiated as soon as any goal is achieved. Thus a heuristic goal can be achieved without
having been fully expanded.

Moses’s SIN

A second Important symbolic integration program , SIN (Symbolic INtegrator ), wes wr it te n
by Joel Moses in 1969, also as a doctoral dissertation at MIT. Its motivation and its st rutcqy
as an Al effort were quite different from those of SAINT. Whereas Slagie had compared the

• behav ior of SAINT to that of freshman calculus students , Moses aimed at behavior
comparable to expert human performance. He viewed SAINT as emphasizing generality in
that it examined mechanisms, like heuristic search , that are useful In many diverse problem 



82 At Handbook

domains. SIN, In contrast , was to emphasize expertise in a particular , complex domain. To do
this , it concentrated on problem analysis , using more knowledge about integratIon , than SAINT
had employed, to minimize ti-to need for search. in fact , Moses did not view SIN as a heuristic
search program. Hence, the program will be describod only briefly here; and a second part of
Moses’s dissertation, a differential equation solver called SOLDIER , will not be described.

SIN worked in ti-tree stages , each stage being capable of solving harder problems than
tile stage before. Stage 1 corresponded roughly to Slagle ’s immediate solution procedure
but was more powerful. It used a table of standard forms ; two of Slagie ’s algorithm-like
transformations; and, most importantly, a method similar to one of Siagle ’s heuristic
transformations, referred to as (he Derivative-divides method. The idea behind this grouping
of methods was that they alone would be sufficient to solve the most commonly occurring
problems, without invoking ti-to computationally more expensive machinery of the later stages.

A problem that stage 1 could not solve was passed on to stage 2. This stage
consisted of a central routine , called FORM , and 11 highly specific methods of integration. -

‘

(One of these methods was a program for integrating rational functions that had been written
by Manove, Bloom, and Engoiman , of the MITRE Corporation , in 1964.) In general , the task of
FORM was to form a hypothesis, usually based on local clues in the integrand , about w hich
method, if any, was applicable to the problem. Only rarely did more than one method apply. - -

The routine chosen first tried to verify its applicability; if It could not , it returned to let FORM - 
-

try again. if the routine did verify the hypothesis, however , SIN ti-ten became committed to
solving the problem by that method or not at all. The method chosen either solved the
problem using mechanisms internal to it or tr ansformed the problem and called SIN recursively
to solve the transformed problem.

Stage 3 of SIN was invoked, as a last resort , only if no stage 2 method was applicable.
Two general methods were programmed here. One method was integration-by-parts , which
used blind search , subject to certain constraints , to find ti-to appropriate way to factor the
integrand. The other was a nontraditional method based on the Llouville theory of integration
and called the EDGE (EDucated GuEss) heuristic. This method involved guessing the form of
the integral. The EDGE heuristic was characterized as using a technique similar to means-
ends analysis , if its guess did not load directly to a solution.

Performance of SAINT and SIN

SAINT was test ed on a total of 86 problems , 64 of them chosen from MIT final
examinations in freshman calculus. it succeeded In solving all but two. The most difficult
problem it solved, both in terms of time and the number of heuristic transformations occurring
in the solution tree (four), was the integral of

(sec t)2
d t .

1 • (sec t)2 - 3(tan t)

Slagle proposed additional transformations that would have handled the two failures, which
w ere the integrals of

x(1.x)”2 dx and cos(x 112) dx 

- -*se

— --— ~
-.



- 

Search 83

SIN, in contrast , was intended to model the behavior of an expert human integrator.The results of running SIN on all of Slagie ’s test problems were ti-tat more than halt were
solved in stage 1, an d all but two of the res t (both of which used integratIon by parts) were
solved In stage 2. After adjusting for the facts ti-tat SAINT and SIN ran on different machinesand that one was interpreted and the other compiled, and for other factors making the
programs difficult to compare, Moses estimated ti-tat SIN would run on the average aboutthree t imes faster ti-tan SAINT. Taking into account a test on more difficult problems as well,he expressed the opinion that SIN was “capable of solving integration problems as diffIcult
as ones found in the largest tables ” (p. 140) and that it was fast and powerful enough for
use in “a practical on-line algebraic manipulation system” (p. 6). For later developments in
this direction, see Applicatione.Macsyma,

pRef erences

‘1See Manove, Bloom, & Engetman (1968), Mos es (1967), Slag le (1961), and Slagle -
•(1963).

I
—— ———-b- . - - - 

- - -

__________________ —



- -

84 Al Handbook

05. STRIPS

STRIPS Is a problem-solving program written by Richard Fikes and NiIs Niisson (1 971) at
SRI international. Each problem for STRIPS is a goal to be achieved by a robot operating in a
simple world of rooms, doors, and boxes. The solution is a sequence of operators , calied a
plan , for achieving the goal. (For a review of the various senses of the word plan , see
Plarir~ng). The robot’s actual execution of the plan is carried out by a separate program,
distinct from STRIPS. A later (1972) addition to the basic STRIPS system permits plans to be
generalized and used again, giving the system some capacity for learnin g.

The Basic STRIPS System

The world model. The world in which the STRIPS robot works consists of several
rooms connected by doors , along with some boxes and other objects that the robot can
manipulate. STRIPS represents this world by a set of well-formed formulas in the first-order -

‘

predicate calculus (see Raprasentation.Logic). Some formulas in the world model are static
facts , such as which objects are pushable and which rooms are connected. Other facts , 

- 

-

such as the current location of objects, must be changed to reflect the actions of tile robot.

Operators. The primitive actions available to ti-to robot are represented by op era w ’s.
Typical operators include going son-towhero and pushing an object somewhere , the locations
being given as parameters. Each operator has p r c ~niir ians to its applicability; to push a box ,
for example, the robot must firs t be next to the box. The application of an operator is
realized by making changes in the world model. The appropriate changes are given by a
delete list and an add list , specifying ti-to formulas to be removed from and added to the world
model as a result of the operation. Thus , each operator explicitly describes what it changes
in the world model.

A typical operator is GOTOB, which denotes the robot’s going up to an object in the
same room:

GOTOB (bx) “go to object bx ”
Preconditions: TYPE (bx ,OBJECT) and

THERE EXISTS (rx) [INROOM(bx ,rx) and 1NROOM(ROBOT ,rx) ]
Delete list: AT(ROBOT, ,~), NEXTTO(ROBOT ,*)
Add list: NEXTTO(ROBOT ,bx)

The precondition statement requires that bx be an object and that both bx and the robot be

~n the same room , rx. The asterisks in the delete list represent argum ents with any values
whatever.

Method of operation. STRIPS operates by searching a space of world models to find
one in which the given goal is achieved, it uses a state-space representation in which each
sta te is a paIr (world model, list of goals to be achieved). The initial state Is (MO , (GO)),
where MO is the Initial world model and GO the given goal. A terminal state gives a world
mo.- -ql in which no unsatisfied goals remain.

Given a goal G (stated as a formula in the predicate calculus), STRIPS first tries to
prov, that G is satisfied by the current world modal. To do this, the program uses a modified

I



Search 85

version of the resolution-based theore m prover 0A3 (Garvey & Kling, 1 969). Typically tile
proof fails , within a pre-specif ied resource limit , because no more resoivents can be formed
(see Theorem Proving.Resolut~on). At this point , STRIPS needs to find a different world
model which the robot can achieve and which sat Lsfie s the goal. Because this task is
complicated for a simple theorem prover , the system switches to a means-ends analysis similar
to that of GPS (Article 02).

To do the means-ends analysis , the program extracts a difference between the goal and
the current model and selects a “relevant” operator to reduce the difference. The
difference consists of any formulas from the goal that remain outstanding when the proof
attempt is abandoned (pruned, if this set is large). A relevant operator is one whose add list
contains formulas that would remove some part of the difference , thereby allowing the proof
to Continue. 

. - -

p

If the operator Is applicable , the program applies it and tries to achieve the goal in the
resulting model; otherwise , the operator ’s precondition becomes a new subgoal to be
achieved . Since there may be several relevant operators at each step , this procedure
generates a tree of models and subgoals. STRIPS uses a number of heuristics to control the
search through this tree.

An Example of the Basic System ’s Performance

As a simple example , suppose the robot is in ROOM 1 and the goal is for it to be next to *
BOXI , which is in adjacent ROOM2. The initial world model MO contains such clauses as

INROOM (ROBOT ,ROOM1),
INROOM (BOX1 ,R00M2),
TYPE (BOX1 ,OBJECT),
CONNECTS (DOOR 1 2,ROOM1 ,ROOM2),
STATUS (DOORI2 ,0PEN), . . .

and the goal GO is

G8 : NEXITO ( RO&OT ,BOX 1)

GO Is not satisfied , and the difference between it and the initial model is
—NEXTTO (ROBOT,BOX 1). STRIPS determines that GOTOB (bx), defined above, is a relevant
operator , with bx instantiated as BOX 1. The operator instance GOTOB (BOX 1), denoted OP1 ,
is not immediately applicable (because the robot is in ti-to wrong room), so its precondition Gi .

ci = TYPE (60X1 ,OBJECT) and
THERE EXISTS (rx) [INROOtI (BOX 1 ,rx) and INROOM (ROBOT ,r x ) j

becomes a new subgoal. Relevant operators for reducing the difference between Gi and
the Initial model MO are: 0P2 = GOTHAU000R (dx ,ROOM2) and
0P3 = PUSHTHRUDOOR (BOX1,dx ,ROOM1) (I.e., move ti-to robot to the room with the box, or
move the box to the room with the robot). If the former course (the better one, obvIously) is
selected, the precondition

- —~~~ -



86 Al Handbook

G2 ~ STATUS (dx ,OPEN) and NEXTTO ( ROBOT ,dx) and
THERE EXISTS ( rx ) [INROOM ( ROBOT .rx) and CONNECTS (dx ,rx ,ROOM2)]

is the new subgoal. The difference —NEXTTO (ROBOT ,DOOR 1 2) can be reduce d by the
operator 0P4 = GOT0000R (DOOR12), which is applicable Immediately. ApplyIng 0P4 adds the
clause NEXTTO (ROBOT ,DOOR12) to the model, creating a new world model Ml. 62 is now
satisfied with dx DOOR1 2, so 0P2 can be instantiated as GOTHRUDOOR (DOOR1 2,ROOM2)
and applied. This deletes the clause iNROOM (ROBOT,ROOM1) and adds
INROOM (ROBOT ,ROOM2). Gi is now satisfied , so OP1 is applied, deleting
NEXTTO (ROBOT ,000R12) and adding NEXTTO (ROBOT ,BOX1) , the desired goal. The final plan
Is thus :

0P4: GOTODOOR (DOOR12)
0P2: GOTHRUDOOR (DOOR 1 2,ROOM2)
OP1: GCTOl3 (BOX1)

The corresponding solution path through the state space tree is ~s follows:

(MO , (G O ))
(MO , (G i , G O ) )

(M0
’
~ (G2 , Gi , G O ) )

\
\
0P4

(Ml , (GI , G B ))

\
\

0P2

(M2 , (GO))

1
(M3 , 0)

General ization of Plans

In the basic STRIPS system, each new problem was solved from scratch. Even If the
system ha d produced a plan for solving a similar problem previously, it was not able to make
any use of this fact. A later version of STRIPS provides for generalizing plans and saving
the m, to assist both In the solution of subsequent problems and also In the Intelligent
monitoring of the robot’s execution of the particular plan.

Triangle tables. A specific plan to be generalized, s ay (OP1 , 0P2 3Pn), is first
stored in a data structure called a triangle table. This is a lower triangular array representing
the preconditIons for and effects of each operator in the plan. Some of its properties are
the following:

1. Cell (1,0) contaIns clauses from the original model that are still true when
operator I is to be applied and that are preconditions f or operator I, OP i.

- 4

_____________________________- 
,-— 

~~~~
- - -

~~~~~
— - — .--

~~ 
- --



Search 87

2. l”~ rked (starred) clauses elsewhere in row i are preconditions for operator i
added to the model by previous operators.

3. The effects of applying operator I are shown in row i+l. The operator ’s add
list appears in cell (i+l , i) . For each previous operator , say operator j,
clauses added by operator j and not yet deleted are copied into cell (1* 1 ,j).

4. The add list for a sequence of operators 1 through i, taken as a whole , is
given by the clauses in row i+1 (excluding column 0).

5. T~ c’ preconditions for a sequence of operators i through n, taken as a whole ,
are given by the marked clauses in the rectangular sub-array containing row
and cell (n+1 , 0). This rectangle is called the i-th kernel of the plan.

The triangie table for the previous exam ple s si-town below. Operators have been
renumbered In the order of their use.

*INROOFI(R000T OP1
1 ROOMI S GOT0000R(012)

*CONNECTS ( 012
ROOM 1 ,R00t125

*IN ROO ~”.(RO B OT 0P2
2 ROOM IS *NEXTTO GOTHRU000R

*CONNECTS(D12 (ROBOT ,D 12)  (D 12 ,ROO M 2)
ROOM 1 ,R00M2 5

*STATUS (0 12 ,
OPEN)

*INROOM (BOX1 , 0P3
3 ROOM2 ) NEXTTO *INROOM GOTOB (BOX1)

*T Y PE(BOX I , (ROBOT, D 12) ( ROBOT ,ROO M2 )
OBJECT)

4 INROOM NEXTTO
(RO B OT ,RO~’M2 ) ( ROBOT ,BOX 1)

0 1 2 3

Figure 1. A triangle table.

Metho d of Generalization. The plan is generalized by replacing all constants in each of
the rlauses In column 0 by distinct parameters and the rest of the table w ith clauses ti-tat
assume that no argument to an operator has been instantiated. The result may be too
general, so the proof of the preconditions for each operator Is run again, noting any
substitutions for parameters that constrain ti-to generality of the plan. Some further
corrections are made for remaining overgenara lization , which might make tho plan either
inconsistent or inefficIent in use. Finally, the generalized plan, termed a MACROP, is stored
away for fu ture use.

L 
_ __ _ _



88 Al Handbook

In the example above the generalized plan would be

GOTODOOR (dx)
GOTHRUDOOR (dx ,rxl)
GOTOB (bx)

with preconditions: INROOM (ROBOT,rx2)
CONNECTS (dx,rx2,rxl)
STATUS (dx ,OPEN)
INROOM (bx,rxl)
TYPE (bx,OBJECT)

and add list: NEXTTO (ROBOT ,bx)
INROOM (ROBOT ,rxl)

That is, the generalized plan sends the robot from any room through a connecting door to an
object In the adjacent room.

Using the MACROP to guide execution. When STRIPS produces a detailed plan to
achieve a goal, it does not necessarily follow that the robot should execute the plan exactly
as given. One possibility Is that some action fails to achieve Its expected effe ct , so that
the corresponding step of the plan needs to be repeated. Another is that the plan found is
less than optimal and would be improved by omitting some steps entirely. The necessary
flexibility during execution is provided by using the MACROP rather than the detailed plan in
monitoring the robot’s actions.

At the beginning of execution, the parameters of the MACROP are partially instantiated
to the case at hand. The robot then attempts , at each stage , to execute the highest
numbered step of the plan whose preconditions are satisfied. This procedure omits
unnecessary steps and allows repeated execution , possibly with changed parameters , of a
step that has failed, If there is no step whose preconditions are satisfied, replanning
occurs. Determining which step can be done next is accomplished by a scan that exploits
the design of the triangle table.

Using MACROPs in planning. When STRIPS is given a new problem, the time it takes to
produce an answer can be reduced very considerably if there exists a MACROP that can be
incorporated into Its solution. The MACROP given above , for example , could be used as the
first part of a plan to fetch a box from an adjacent room. The part of the MACROP consisting
of Its first two suboperators, if used alone, would also give a ready-made solution to the
problem “Go to an adjacent room”~ or it could be used repeatedly in solving “Go to a distant
room.”

The triangle table provides the means of determining whether a relevant macro
operator exists. To determine whether the sequence of operators 1 through I of the MACROP
is relevant , STRIPS checks the add list of this sequence as given by the 1+ it/i row of the
table. Once a MACROP is selected, irrelevant operators are edited out by a staightforward
algorithm, leaving an economical, possibly parameterized operator for achieving the desired
add list. The operator’s preconditions are taken from the appropriate cells of column 0.
Thus, almost any sub-sequence of operators from a MACROP can become a macro operator in
a new plan. To keep new MACROPs from producing an overwhelming number of different



S..rch 89

operators that must be considered during planning, the system contains provisions for
preventing consideration of rodundant parts of overlapping MACROPe and for delot,iiq
MACROPs that have been completely subsumed by new ones.

In a sequence of problems given to STRIPS , the use of MACROPe ~r. some cas es
reduced planning time by as much as two-thirds. The longest plan so formed . conslstsnq of
11 primitIve operations, took the robot from one room to a second room, opened a door
leading to a third room, took the robot through the third room to a fourth room, and then
pushed two pairs of boxes together. One drawback noted by the authors was that , however
iong the solution sequence , STRIPS at each stage of its search dealt with every operation in
complete detail. A later program, Sacordot i’ s AI3STRI PS (Art Icle 06), provides the mechanism
for deferring the details of the solution until afte r Its main outline has been completed.

Ref arences

See Fikes & Nllason (1971), Fikes , Hart , & Nlls son (1972), and Garvey & Kling (1969).

S

-~~ ~-~——- .
-- - - ~~ - rn--- -—-—~~~-

-
~~~~--~~- --


00 Al Handbook

06. ABSTR IPS

A combinatorial explosion faces all problem solvers that attempt to use heuristic search
in a sufficiently complex problem domain. A technIque called hierarchical sea rch or hIerarchical
planning, implemented In Earl Sacerdoti’ s ABSTR IPS (1074), is an attempt to reduce the
combinatorial problem. The idea is to use an approach to problem solving that can recognize
the most significant features of a problem, develop an outline of a solution in terms of those
features , and deal with the less important details of the problem only after the outline has
proved adequate.

The implementation of this approach involves using thst~nct levels of problem
representation. A simplified version of the problem , from which details have been omitted,
Occurs in a higher level problem space or abstraction space’; the detailed version, In a ground space.
By a slight extension, providing for several levels of detail instead of just two, a hierarchy of
problem spaces is obtained. in general , each space in the hierarchy serves both as an
abstraction space for the more detailed space just below it and as a ground space with
respect to the less detailed space just above.

Background--Th e STRIPS System

ABSTRIPS Is a modification of the STRIPS system , doscribod in Art icle 05. The problem
domain for both programs is a world of robot planning. In both , the program Is given an Initial
state of the world, or world model, consisting of a sot of formulas that describe the floor plan
of a group of rooms and other facts such as the location of the robot and other objects
within these rooms. The goal state to be achieved is also given. The elements of a solutIon
sequence are operato rs representing rol)ot actions ; examples are operators for going up to an
object , pushing an object , and going through a door. The definition of each operator contains
three kinds of formulas: (a) its p reconditions , representing statements that must be true of a
world model in order for the operator to bo applicable; (b) Its add list , a list of formulas that
will become true and should be added to the world model when the operator Is applied; and
(c) its delete list , a corresponding hst of fo rmulas to be .~~leted from the model upon
application of the operator. The search for a sequence of operators producing the desired
world model Is guided by a mean s—e nds analysis similar to tha t of GPS (Article 02).

Abstract ion Spaces

Given the world models and operator descriptions of the basic STRIPS system, the first
question is how to define the “details ” that are to be ignored in the first pass at a solution.
Sacerdoti’s answer was to treat as details certain parts of the operator preconditions. At all
levels of abstraction, the world models and the add and delete lists of operators remain
exactly the same. Such a definition of “details ” was found to be strong enough to produce
real improvements in problem-solving efficiency , while keeping a desirable simplicity in the
relationship between each abstraction space and its adjacent ground space.

The preconditions for an operator are stated as a list of predications, or l i terals,
concerning the wor ld model to Which the operator Is to be applied. The relative importance
of literals Is Ind icated by attaching to each a number called its criticalit y value. The hierarchy
of problem spaces Is than defined In terms of levels of criticality: in the space of criticality
n, all operator precondit ions with criticality less t han n are Ignored.

-— — — - -----~
,

~~~~~~~~ .- ..- I - - 1. 1 -. ~~~~~~~~~~



Search 01

The assignment of criticality values is done just once for a given definition of the
problem domain. The general ideas to be reflected In the assignment are the following:

1. If the truth vaiue of a literal cannot be changed by any operator in the
problem domain, it should have the highest criticality.

2. If the preconditions for an operator include a literal L that can be
readily achieved once other preconditions for the same operator are
satisfied , then I should be less critica l than those other preconditions.

3. If the posslbihty of sat isfying literal I depends on additional
preconditions besides those referred to In (2), then I should have high
but less than maximum criticality.

The actual assignment of criticalitlos is clone by a combination of manual and automatic
moans. First , the programmer supplies a partial ordering of all predicates that can appear in ‘ -

operator preconditions. The partial ordering servos two purposes: It supplies a tentative
criticality value for all Instances of each prodicato , and it governs the order in which the
program will consider literals for possible Increases (but not decreases) In criticality.

As an example, consider an operator TURN-ON-LAMP (x), with preconditions

TYPE (x ,LAMP) and THERE EXISTS Cr) [INROOM (ROBOT ,r) and -~ 
- .

INROOM (x,r)) and PLUGGED-IN (x) and NEXTTO (ROBOT,x)) .

The partial ordering of predicates , reflecting an intuitive view of their relative Importance,
might be as follows:

Predicate Rank

TYPE 4
INROOM 3
PLUGGCD-IN 2
NEX I TO 1

FI gure 1. 1n lt Ia~ rank ing of predicates.

The assignment algorithm, whose output Is summarized In the figure below, would first find
that the truth of TYPE (x,LAMP) is beyond the power of any operator to change and
therefore would set Its criticality to the maximum; in this case, 6. Then it would find that
TYPE (x ,IAMP) is an insufficient basis for achieving INROOM (ROBQT ,r) or INROOM (x,r); so

• these two literais would have their criticality raised to the next highest value, 6. Next
PLUGGED-IN Cx) Is considered, and a plan to achieve PLUGGED-IN (x) Is found using only the
literals already processed as a starting point. Hence, the PLUGGED-IN literal retains Its

t tentative criticality of 2, and, similarly, NEXTTO (ROBOT ,x) is given criticality 1. The result,
after similar processing at the preconditions of the other operators in the domain, is a
hierarchy of at least four, and possibly six, distinct problem spaces.

____________________ _ _ _ _ _ _

H
- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~ -~



02 Al Handbook

Literal Critica lity Value

TYPE (x LAMP) 6
INROOtI ~ROBOT ,r) 5
INROOIi (x ,r) 5
PLUGGED— IN (x) 2
NE XTTO ( ROB~T,x) 1

Figure 2. Final criticality of flterals.

Control Structure

A problem statement for ABSTRIPS, as for STRIPS , consists of a description of the state
of the world to be achieved. A solution is a plan, or sequence of operators, for achieving It.
ABSTRIPS proceeds by forming a crude plan at the hig hest level of abstraction and
successively refining it. The executive is a recursive program taking two parameters: the
current level of criticality, defining the abstraction space in which planning is to take place,
and a list of nodes representing the plan to be refined. Before the Initial call, criticality is
set to the maximum , and the skeleton plan Is initialized to a single operator--a dummy--
whose preconditions are precisely the goal to be achieved. ABSTRIPS computes the

• difference between the preconditions and the current world model, finds operators relevant
to reducing the difference and , If necessary, pursues subgoals of satisfying the
preconditions of the selected operators. During this process, any precondlt~ons of less than

• the current criticality are ignored. A search tree is built from which, if the process
succeeds, a fuller operator sequence leading from the Initial world model to the goal can be
reconstructed. This new skeleton plan, together with the next lower criticality level, are
passed recursively to the executive for the next round of planning. •

The search strat egy used by ABSTRIPS can be called kng th-first , In that the executive
forms a complete plan for reachIng the goal in ea ch abstraction space before considering
plans In any lower level space. This approach has the advantage that it permits early
recognition of dead ends, thus reducing (ho work wasted in extending the search tree along
fruitless paths involving detailed preconditions. If a subproblem in any particular space
cannot be solved, control Is returned to its abstraction space , and the search tree is
restored to its previous state In that space. The node that caused the failure in the lower
level space is eliminated from consideration and the search is continued In the higher level
space. This mechanism, an example of backtrackin g, suff ers from the problem that no
Information is available at the higher level on what caused the plan to fail.

Because backtracking can be inefficient and also because each operator in an
abstraction space may be expanded to several operators in the ground space, it is Important

• for ABSTRIPS to produce good plans at the highest level. Two modifications to STRIPS were
made to try to Insure that it would do so.

First , whereas a STRIPS search tended to be dcpti~-first and therefore sometimes found
non-optimal solutions, ABSTRIPS makes the order of expanding nodes In the search tree

t dependent on the level of abstraction. At the highest level It uses an evaluation function that
may Increase the search effort but which Insures that the shortest possible solution
sequence will be found. (See Article C3b on A* .)

_______________ - -~—--- -~
---.• .

~~~ ~~~~~~~~~ -. ~~~~~~~~ • I  • _ I .~~ 1 1.I-


- -• •~~•~~~~~~~~~~~~ • • •~~~~~-

Search 93

The second change relates to the instantiation of operator parameters, in cases where
two or more choices seem equally good. While STRiPS made a choice arbitrarily, ABSTRIP S
def ers the choice until a greater level of detail indicates one to be preferable. Backtracking
can still occur should the choice be mistaken.

Performance

ABSTRIPS and STRIPS were compared on a sequence of problems. One of the longest ,
needing 11 operators for its solution, required the robot to open a door, go through the
adjacent room to another room, push two boxes together, and then go through two more
doors to reach the room where it was to stop, The basic STRIPS system required over thirty
minutes of computer time to find the solution; ABSTRIPS used 5:28 minutes and generated
only half the number of search-tree nodes. It was noted that by the time ABSTRIPS reached
the most detailed level, it had in effect replaced the original large problem by a sequence of
7 easy subprobIems.

•1

Ref erences

See Sacerdoti (1974).

J
—• — — • .

~~
- I. — -___--:- __

•- ‘4- ~i
S -

~~ SS— — —
-,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_~_____ - __5~5__

94 Al Handbook

References

Adelson-Veiakly, G. M., Arlazarov, V. I., & Donskoy, M. V. Some methods of controlling the S -

tree search in chess programs. Artificial Intelligence, 1976,6, 361-371.

Aho, A. V., Hopcroft, J. E., & Uilman, J. D. The Design and AnalysIs of Computer Algorithms.
Reading, Mass.: Addison-Wesley, 1974.

Amarel, S. On representations of problems of reasoning about actions. In 0. MichIe (Ed.),
Machine Intellig ence 3. Now York: American Elsevier, 1988. Pp. 131-171.

Beudet, 6. M. On the branching factor of the alpha-beta pruning algorithm. Artificial
Intelligence , 1978, 10. 173-199.

I

Berliner, H. J. Some necessary conditions for a master chess program. In IJCAI 3, 1973. Pp.
77-86.

BerlIner, H. J. Chess as problem solving: the development of a tactics analyzer. Dept. of y
Computer Sc ience , Carnegie-Mellon University, 1974.

S 

Berliner, H. J. Experiences in evaluation with BKG--a program that plays backgammon. In
IJCAI 6, 1977. Pp. 426-433. (a)

• Berliner, H. J. A representation and some mechanisms for a problem-solving chess program.
In M. R. B. Clarke (Ed.), Advances In Computer Chess 1. Edinburgh: Edinburgh
University Press, 1977. Pp. 7-29. (b)

Berliner, H. J. Search and knowledge. In IJCAI 5, 1977. Pp. 9 75-979. (c)

Berliner, H. J. A chronology of computer chess and its literature. Artificial Int.liigence,
• 1978, 10,201-214. (a)

Berliner, H. J. The B’ search algorithm: a best-first proof procedure. CMU-CS-78-1 12, Dept.
of Computer Science, Carnegie-Mellon University, 1978. (b)

Bernstein, A., Arbuckle , T., Roberts, M. do V., & Balsky, M. A. A chess playing program for the S

• IBM 704. in Proc. Western Joint Computer Conference, 1958. New York: American
InstItute of Electrical Engineers, 1959. pp. 167- 159.

Bratko, i., Kopec, 0., & Michle, 0. Pattern-based representation of chess end-game
knowledge. Computer J,, 1978, 21, 149-163.

• Cheng, C. L, & Slagle, J. R. An admissible and optimal algorithm fcr searching AND/OR
graphs. Artificial IntellIgence, 1971,2, 117-128.

Charness, N. Human chess skill, In P. W. Froy (Ed.), Chess Skill in Man and Machine. New
York: Sprlnger-Vedag, 1977. pp. 34-53.

_
•

- 

-• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘

~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~
- 

~~ 
S



- 
S

Search 95 S

de Champeaux . 0., & SInt, 1. An Improved bI-directionsl search algorithm. In IJCAI 4, 1076.
Pp. 309-314.

de Champeaux , 0., & Sint, 1. An improved bi-iiirectional heuristic search algorithm. J. ACM,
1077 , 24, 177- 101.

Dijkstra, E. W. A nob on two problems In connection with graphs. Numerisch. Mathsmatik . •~

1959, 1, 269-271.

Doran, .J. An approach to automat ic problem-solvIng. In N. L. Collins & 0. Michle (Eds.).
Machine Intelligence 1. New York: American Elsevier , 196 7. Pp. 106- 123.

Dor~n, J. [ . & Mlchie, 0. Experiments with the graph traverser program. Proceedings of
the Royal Society of London. 1066, 294 (ser ies A), 235-259.

Elcock , E. W. Representation of knowledge in a geometry machine. In E. W. Elcock & 0.
Mich*o (Eds.) , Macbin. Intelligence 8. Now York: John Wiley & Sons, 1977. Pp. 11-
29.

Ernst , G.. & Newell, A. GPS: A Case Study in Generality and Probl.m Solv ing. New York:
Academic Press , 1969.

Feigenbaum, E. A. Artifici a l intelligence: Themes in the second decade. In A. J. H. Morroll
(Ed ), Information Processing 68: Proc. IFIP Congress 1968 (Vol. 2). Amsterdam:

S North-Holland, 1069. Pp. 1008-1024.

Foigenbaum , E. A.,, & Feidman, .J. (Eds.) Computers and Thought. New York: McGraw-Hill,
1 063.

Fikes, ft E., Hart , P., & Nilsson, N. .1. Learning and executing generalized robot plans.
Artificial Intelligence, 1972, 3, 261-288.

Flkos, R. E., & Niisson, N. J. STRIPS: A now approach to the application of theorem proving
to problem solvIng. Artificial Intelligence, 1971 ,2, 189-208.

Frey, P. W. An introduction tO computer chess. In P. W. Frey (Ed.). Chess Skill in Man and
Machina. New York: Springer-Verlag. 197?. Pp. 64-8 1.

Fuller, S. H., Gaschnig, J. G., & Gillogiy, J. 4. Analysis of the alpha-beta pruning
algorithm. Department of Computer Science, Carnegie-Mellon UniversIty, 1973.

Garvey, 1., & Kiing, A. User ’s guide to 0A3.5 question-answering system. TechnIcal Note
15, Al Group, Stanford Research Institute, Menlo Park , Calif., 1969.

Gaschnlg, 4. Exactly how good are heuristics? Toward a realistic predictive t’~eory of
best-fir st search. In IJCAI 6, 1077, Pp. 434-44 1,

S Gelernter, H. A note on syntactic symmetry and the manipulation of formal systems by
machine. Information and Control, 1959, 2, 80-89.

-5 -— —-

— - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~ • - - - - -



—S  -~~~~~~~~~~~~~~~~~

96 Al Handbook

Gelernter , H. Realization of a geometry-theorem proving machine. In E. A. Felgenbaum & 4.
Feldman (Eds.), Computers and Thought. New York: McGraw-Hill , 1963. Pp. 134-162.

Gelernter , H., Hansen, 4. R., & Gerberich, C. L. A Fortran-compiled list processing language.
J, ACM, 1960, 7, 87-101.

Ge lernter , H., Hanse n, 4. R., & Loveland , D. W. Empirical explorations of the geometry-
theorem proving machine. in E. A. Feigenbaurn & J. Feldman (Eds.), Computers and
Thought. New York: McGraw-Hill, 1963. pp. 153-163.

Ge lernter , H., & Rochester, N. Intelligent behavior in problem-solving machines. IBM 4. R&D,
1958, 2, 336-346. 5

Gelperln, 0. On the optimality of A’ . Artificial Intelligence, 1977, 8, 69-76.

S 
GlIlogly, 4.4. The technology chess program. Artificial InteHlgenc., 1972, 3, 145-163.

Gl imore , P. C. An examination of the geometry theorem machine. Artificial Intelligence,
1970,2, 171-187.

Good, I. J. A five-year plan for automatic chess. In E. Dale & 0. Michla (Eds.), Mac hine
Int.llig•nce 2. New York: American Elsevier , 1 968. Pp. 89-118.

Greenblatt , R. D., Eastlake , 0. E., & Crocker , S. D. The Greenblatt chess program. In AFIPS
Conference Proc., Fall Joint Computer Conference , 1967. Washington,
0. C.: Thompson Books, 1967. Pp. 801-810.

Griffith, A. K. A comparison and evaluation of three machine learning procedures as applied S

to the game of checkers. Artificial Intelligence, 1974 ,5, 137-148.

Hail, P. A. V. Branch-and-bound and beyond. In IJCAI 2, 1971. Pp. 641-660.

Harris, L. R. The bandwidth heuristic search. In lJCAl 3, 1973. Pp. 23-29.

Harris, 1. A. The heuristic search under conditions of error. Artificial Intelligence, 1974, 5,
217-234.

Harris, L. A. The heuristic search and the game of chess: a study of quiescence,
sacrifices, and plan oriented play. In IJCAI 4, 1975. Pp. 334-339.

Harris, L. A. The heuristic search: an alternative to the alpha-beta minimax procedure. In
P. W. Frey (Ed.), Chess Skill in Man and Machine. New York: Springer-Verlag, 1977.
Pp. 167-166.

Hart, P. E., Nilason, N. 4., & Raphael, B. A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. SSC, 1068, SSC-4 , 100-107.

Hart, P. E., Nllsson, N. 4., & Raphael, B. Correction to A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. SIGART Newsletter, No. 37, December 1972,
pp. 28-29. 

5 “ I

-_ _ _- -S fl -



Sear ch 97

Hearst , E. Man and machine: chess achievements and chess thinking. In P. W. Frey (Ed.), 
S

Chess Skill In Man and Machine. New York: Springer-Verlag, 1977. Pp. 167-200.

Hillier , F. S., & Lieberman, G. 4. Operations Research (2nd ad.). San Francisco: Hoiden-
Day, 1974.

Jackson, P. C. Introduction to Artificial Intelligence. New York: Petrocelli, 1974.

Karp, R. M. Reducibility among combinatoria l problems. In R. E. Miller & 4. W. Thatcher
(Eds.) , Complexity of Computer ComputatIons. New York: Plenum Press , 1972.
Pp. 85- 103.

Kister , 4., SteIn, P., Ulam, S., Walden , W., & Wells, M. Experiments In chess. 4. ACM, 1957,
4, 1 74-177 .

Knuth, D. E., & Moore, A. W. An analysis of alpha-beta pruning. Artificial Intelligence, 1 975,
5 

6, 293-326.

Kotok , A. A chess playing program. ALE and MIT Computation Center Memo 41 . Artificial
intelligence Project , Massachusetts Institute of Technology , 1962.

Kowalsk i, A. And-or graphs , theorem-proving graphs , and bi-directional search. In B.
Moitzer & D. Michie (Eds.), Machine Intelligence 7. New York: John Wiley & Sons,
1072. Pp. 167- 194.

Lawler , E. W , & Wood, 0. E. Branch-and-bound mothods: A survey. Operations Research ,
1966, 14, 699-719. 

S

5 

Levi, G., & Sirovich, F. A problem reduction model for non-Independent subproblems. In IJCAI -

4, 1975. Pp. 340-344. 
5

Levi, G., & Sirovich, F. Generalized AND/OR graphs. Artificial Intelligence, 1976. 7, 243- 
5

259.

Levy, D. The computer chess revolution. Chess Life & Review, February 1979, 84-85.

Manove, M., Bloom, S., & Engelman, E. Rational functions in MATHLAB. In 0. G. Bobrow (Ed.).
Symbol Manipulation Languages and Techniques. Amsterdam: North-Holland, 1968.
Pp. 86-102.

Mart elii, A. On the complexIty of admissible search algorithms. Artificial Intelligence,5 

1Q77 ,$,~~-13.

Martelli, A., & Montanan , U. Additive AND /OR graphs. In IJCA1 3, 1973. Pp. 1-11.

MichIe, D. Strategy building with the graph travers er. In N. 1. Collins & D. Michle (Eds.),
Machine Intelligence 1. New York: American Elsevier , 1967. Pp. 135- 152.

Michle, 0. A theory of advice. In E. W. Elcock & 0. Michle (Eds.), Machine IntellIgenc e 8.
New York: John Wiley & Sons, 1977, Pp. 161-188. 



~!

98 Al Handbook

Michie, D., & Bratko, I. Advice table ropresonta~ - . ~s of chess end-game knowledge. In
Proc. AISS/Gi Conference on Art if icial Inteliigence . 1978. Pp. 104-200.

Michie , ~3., & Ross , R. Exper im ents with the adaptive graph traverser. in B. Meitzer & D.
Mechio (Eds .), Machine Intell igence 6. Now York: American Eisevier , 1070. Pp.
301-318.

Minsky, M. Ste ps toward artif ic ial intelligence. In E. A. I cigenbaurn & 4. Feldman tEds.),
Com puters and Thought. Now Yor I ’ , - McGraw- Hill , 1963. Pp. 406-450.

5 Mit tm an , 8. A brief history of the computer chess tournaments: 1970-1975. In P. W. Frey
(Ed.), Chess Skill In Man and Machine. Now York Springer-Verlag , 1977. Pp. 1-33.

Moore, E. F. The shortest path through a ma~o. In Proceedings of an International
Symposium on the Theory of Switching, Part II. Cambridge: Harvard University
Press, 1050. Pp. 285-292.

Moses, 4. Symbolic integration. MAC-T R-47 , Proje... t MAC , Massachusetts Institute of
Technology, 1967.

Newborn, M. Computer Chess. New York: Ac ade rn c Press, 1075.

S Newborn, M. The efficiency of the alpha-beta search or. trees with branch-dependent
5 terminal node scores. Artificial Intelligence . 1977 , 8, 137-153.

Newborn, M. Computers and chess flows : recent tournaments. SIGART Newsletter , No. 65,
April 1978, p. 11.

Neweil, A., & Ernst, G. The search for general ity. t:~l W. A. P.~aIenIch (Ed.), Information
Processing 1966: Proc. lFlP Congress 65. Washington: Spartan Books, 1965. Pp.

5 
17-24. .

S Newell, A., Shaw , ,J. C., & Simon, H. A. A variety of intelligent learning in a general problem-
solver. In M. C. Yovit s & S. Cameron (Eds.), Self-organizing Systems. New York:
Pergamon Press, 1960. Pp. 153-180.

Newell, A., Show , 4. C., & Simon, U. A. ~~~ess-pIaying programs and the problem of
complexity. In E. A. f&gonbaum & 4. Foidman tEds.), Computers and Thought. New
York: McGraw-Hill, 1963. Pp. 39-ia. (a)

Newell, A., Shaw, J. C., 8, Simon, H. A. Empirical explorations with the logic theory machine:
A case history In heuristics. In E. A. Felcienbaum & 4. Feldman (Eds.), Computers and
Thought. New York: McGraw-Hiii . 1063. Pp. 100-133. (b)

S 
Newell, A., & Simon, H. A. GPS, a program that sImulates human th~~. , ii E. A. Feicienbaum

& 4. Feldman (Eds.), Computers and Thought. New York: McGraw-Hill, 1963. Pp. 279-
293.

T Newell, A., & Simon, H. A. Human Problem Solving. Englewood Cliffs , N. J.: Prentice-HaIl,
1972,

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  - ~ - - - ..~~~~~~~~~~~~~~~~ S



Search 09

Newell , A., & Simon, H. A. Computer sc ence j s e m p~r~~al inquiry: Symbols and search. ~ he
1076 ACM Tur ing Locturi.,. Comm . AC M, 10.’6 , 10 . 113-126.

Nilsson, N. ,J. Searching problem-solv ing an,. ç~ame-playing trees for minimal cost soIut’~~.
In A. J. H. Morreil (Ed .), Information Processing 68: Proc. lFlP Congress 1968 (V & ~
2). Amsterdam: North-Holland , i~ so. pp. 1556-1562.

Niisson , N. 4. Problem-Solving Methods in Ar t if icial Intelligence. New York : McGraw-hill ,
194 ’l.

Nils son, N. 4. Art i f ic ia l  intellig ence. In J. L. C sent~ Ll i.Ed .) , Information Processing 74:
Proc. 1FIP Congress 74. Amst e rdam: North-Holland , 1974.  Pp. 778-801.

PiUat, J. A chess combination program wh ch uses ptans. Artificial tnteiligence, 1011 . 8,
275-32 1 5

PohI, I. Bi-directional and heurist~’ search n path problems. SLAC Report No. 104 , Stanford :
Linear Accelera tor Center , St~info rd , 1050.

PohI, I. F i rst  results on the et t e l  e~ e r r e r  i ,. . . :st~~ s,. Rh Iii U N1~~t:er & t) . ~~~~~~
(Eds. ), Machine Intelligence 5. New York: A me rican Etsov ior , 1970. Pp. 2 10-236.  (a l

PohI, I. Heuristic search v~ow od a~
; path finding in a graph. Artificial Intelligence. 1 010 ,

1, 193-204. (b)

Pohi , I. Bi—de roct ional sea rc h .  In B. McIt:er & 0. Mi,.-h~e ~Lds .) , Machine Intelligence 6.
Now York: Amer ican L ise v e r , 1011. Pp. 12.’- 140.

Pohl, I. The avoidance of (re~a t v e )  c a t as t r e~~:e , heuristi c competence . genuine dynamic
weighting and computational issues in ie~ nsi c problem solving. In 1JCAI 3, 1 013. Pp.
12-1 7.

PohI , I. Practi cal and theoretical cons iderations ri heuristic search algorithms. In E. W.
Elcock & D. Michie (Eds.), Machine Intelligence 8. P-Jew York: John Wiley & Sons ,
1977. Pp. 55-72.

Polya , 6. How to Solve It (2nd ed ). New York: Doubleday Anchor , 1957.

Raphael , B. The Thinking Computer. San Franc isco; W. H. Freeman , 1976.

Reingoid, E. M., Nievergelt , 4., & Doe , N. Combinatorial Algorithms: Theory and Practice.
Engiewood Cliffs , N. J.: Prentice-Hall , 1 91?.

Sacerdoti , E. (3. Planning in a hierarchy of abstract ion spaces. Artificial Intelligence , 1 014 ,
5, 115-135.

Samuel, A. L. Some studies in machine learning using the game of checkers. in E. A.
Felgenbaum & 4. Feldman (Eds.), Computers and Thought. New York: McGraw-Hill ,
1963. Pp. 71-105.

S - __________-S ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
—



100 Al Handbook

Samuel, A. L. Some studies in machine learning using the game of checkers. lI--recent
progress. IBM J. R&D, 1967, 11 ,601-617.

Sandewali , E. 4. Heuristic search: Concepts and methods. In N. V. Findler & B. Meitzer
(Eds.), Artificial Intelligence and Heuristic Programming. New York: American
Elsevier , 1971. Pp. 81-100.

Shannon, C. E. Programming a computer for playing chess. Philosophical Magazine (Series
7), 1950, 41, 256-275.

Shannon, C. E. A chess-playing machine. In 4. A. Newman , The World of Mathematics (vol.
4). New York: Simon & Schuster , 1956. Pp. 2124-2 133. 5

Simon , H. A., & Kaclane , 4. B. Optimal problem-solving search: All-or-none solutions.
ArtificIal Intelligence, 1975, 6, 235-247.

Siagle , J. R. A heuristic program that solves symbolic integration problems In freshman :
calculus: Symbolic Automatic integrator (SAINT). 5G-0001, Lincoln Laboratory,
Massachusetts institute of Technology, 1061.

SIagle, 4. R. A heuristic program that solves symbolic integration problems in freshman
calculus. In E. A. Feigenbaum & 4. Feldman tEds.), Computers and Thought. New
York: McGraw-Hill , 1963. Pp. 191-203. (Also in 4. ACM, 1963, 10, 507-520.)

Siagle, 4. R. ArtificIal Intelligence: The Heuristic Programming Approach. New York:
McGraw-Hill, 1971. 5

SlagI e, J. A., & Dixon, J. K. Experiments with some programs that search game trees. 4. ACM,
1969, 16, 189-207.

Slagle , ,J. A., & Dixon , 4. K. Experiments with the M & N tree-searching program.
Comm, ACM , 1970, 13, 147-154.

Slate, 0. 4., & Atkin, L. R. CHESS 4.5--the Northwestern University chess program. In P. W.
Frey (Ed.), Chess Skill in Man and MachIne. New York: Springer-Verlag, 1977.
Pp. 82-118.

Thorp, E., & Walden, W . E. A computer-assisted study of Go on m x n boards. In A. B. Banerj i
& M. (3. Mesarovlc (Ecis.), Theoretical Approaches to Non-Numerical Problem
Solving. Berlin: Springer-Verlag, 1970. Pp. 303-343.

Turing, A. M., et al. Digital computer s applied to games. In B. V. Bowden (Ed.), Faster Than
Thought. London: PItman, 1953. Pp. 286-310.

Vande rbrug, G., & Minker , 4. State-space , problem- redu ction , and the orem proving--some
relationships. Comm. ACM, 1975, 18, 107-115.

Whitehead , A. N., & Russell, B. Principla Mathematica (2nd ed., Vol. 1). Cambridge: The
University Press, 1926.

Wilkins, (3. using plans in chess. To appear In IJCAI 6, 1979.

5 - . 5  5 - , S_ —- -. ~. -~~~ S~5 55 ~ - - ~~~~~



• .~ .

Search 101 
5

f

WInston, P. H. Artificial IntellIgence. Reading, Mass.: Addison-Wesley, 1977.

;i 
•

‘ I
S 

_ _ _ _  _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


102 Al Handbook

Index

16-puzzle 38, 41 conjunctive subgoals 71 , 77
consistency assumption 36, 39, 41
construction 79

8-puzzle 9, 24 , 34 , 37, 38 control strategy 2
critical nodes 56
criticality value 90

A’ 35-36 , 37 , 38, 39-40, 48
abstraction space 90
AB STRIPS 1, 6, 89, 90-93 data-driven reasoning 3
acid list 84. 85, 87 , 88, 90 database 1
AdeIson-Volskiy, G. M. 50, 65 do Champeaux, 0. 42
admissibility 35, 47 , 48, 50 dead position 53, 62
ad missibility condition 35, 37 , 41 degree of a tree 56 5

alpha-beta pruning 64-68, 63 delete list 84 , 90 1
Am are l , Saul 6 depth bound 2-3. 29, 61 , 73
AND/OR graph 4, 13-16, 18, 43, 72, 77 , 81 depth of a node 23
AND/OR graph search 27-31, 43-50 depth-first search 23-24. 29-30, 33, 63,
AND/OR tree 14, 28, 68 72 , 92
Atkln , 1. A. 50, 63 d i f f e r ence 3, 72, 85 •

Dixon, J. K. 64
Doran, J. 37

backed-up values 63 dynamic ordering 64
backgammon 68 dynamic weighting 38
backtracking 2, 92
backward reasoning 2-4 , 12, 24, 28, 43,

69, 70 Ernst , G. 7, 72
bandwidth condition 39 evaluation function 33-34 , 35, 37-40, 41-
bandwidth search 32, 39-40 42, 46 , 48, 50. 60, 78, 92
Berliner, H. 4. 61, 62-63, 64, 66-67 expansion of a node 20, 28
Bernstein, A. 66
best-first search 32, 64
bidirect ional search 3, 24-26, 4 1-42, 43 Feigenbaum, E. A. 7
blind search 1, 7-8, 20-31, 33-34, 41, 70 Feldman, 4. 7
bottom-up reasoning 3 Fikes , Richard 1 7, 84
branch- and-bound 35 f ixed ordering 56, 63
branching factor 56, 61 forward pruning 65
breadth-first sear ch 20-22, 29, 33, 37, forward reasoning 2-4, 24, 28, 43

42, 70 full-wIdth search 64

Chang , C. L. 48 game tree 4, 18-19, 61
checkers 5, 18, 68, 59, 60 game-tree search 61-68
chess 2, 6, 18, 58-68 Gelernter , Herbert 77
combinatorial explosion 6, 6, 31, 61

5
-
’

______ “ ‘~~~~~~~~~ ‘ “ 5~~~~~~~~~~~~~~
_
~~

•
~~’ •~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

Ti

Search 103

General Problem Solver (GPS) 72-76, 85, Levi, G. 4890 live position 53
5generalized AND/OR graph 49 Logic Theorist 3, 69-71, 72, 74, 77generate-and_test 7-8

geometry 77~79
Gillogly, 4. J. 60 macro-operators 6go 65 MACROP 87goal 2, 12, 66, 72 Martelli , A. 36goal states 10 max cost 44, 45-46
~oaI-directed reasoning 3 means-ends analysis 3, 32, 72, 76, 82, 85,Graph Traverser 37 90Greenblatt, R. (3. 69, 62, 65 method of analogies 66ground space 90 Michio , 0. 37, 6 7-68

minlmax 51-54, 55, 66, 68, 61
Minsky, M. 7Harris, L. A. 38, 39, 60, 64 Moore, R. W. 52, 54Hart , Peter 35 Moses, Joel 81

S heuristic Information 31, 35, 43, 46, 58 mutilated chessboard problem 5Heuristic Path Algorithm 37
heuristic power 36
heuristic search 1, 6, 7-8, 20, 31-50, 76, negmax 52-53, 5477 Newell, AlIen 7, 8, 66, 60, 72heuristic search method 31 Nilsson, Nils 8, 17, 31, 33, 35, 46, 64, 84heuristics 6-8, 69
hierarchical search 90
hierarchical planning 90 operator schemata 10horizon effect 62 Operators 2, 9, 12, 43, 69, 72, 77, 80, 84,

905

optimal solution 6, 34, 43information retrieval 2 optimality 36, 37, 48, 50Informedness of an algorithm 35 ordered depth-first search 33, 63init ial states 10 ordered search 32-34, 35, 41, 46-48, 49,interdependent subprobjems 29, 48-60 81intermediate OR node 14, 29-

~
. Itera t ive deepening 63

partial development 32, 72
partial expansion 32 5Kadane, 4. 38 partial functions 10 5killer heuristic 64 Pitrat , 4. 67Knuth, 0. E. 62, 54 plan 67, 84, 86, 92
planning 1, 6, 88, 90
plausible-move generation 66learning 80, 84 ply 61

• length-fir st search 92 PohI, Ira 3, 25, 37, 38, 41

~-~~~~~~-~~~~~~ - -—-~
-- — -5--- - - -

-. . -
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~



— _ _ _ _ _ _ _

F

104 Al Handbook

Polya . G. 7 solvable node 15
potential solution 46-47, 48, 49 state 2, 9
precondItions 84, 86, 00 state space 5, 9
predicate calculus 84 state-space graph 4, 10-11, 18, 20, 33,
primitive problem 12, 14, 78 35, 43
problem reduction 73, 77 state-space representation 3, 9-11, 12,

— problem representation 1-6, 9-19 15-17,20,43,72,84 5

problem solving 1, 31, 43, 60, 72, 77, 80, state-space search 7, 11, 20-26, 28, 31-
84, 90 42, 46, 48, 70

problem-reduction representation 4, 12-17, static evaluation function 53, 60, 62
27, 43, 72 STRIPS 1,6, 17, 49, 84-89, 90, 92-93

propositional calculus 60. 74, 76 successor node 4, 10, 20
pruning 32, 53, 54, 63, 65, 78, 81, 85 sum cost 44 , 45

symbolic Integration 1, 2, 3, 76, 80-83
syntactic symmetry 78

0A3 85
quiescence 61-63, 64

Table of Connections 73
tapered forward pruning 65

random game tree oi terminal node 14, 18
Raphael, Bertram 35 theorem proving 2, 5, 34, 43, 69, 74, 76,
ref utation move 64 77, 84
robot problem solving 2, 84-93 theorem-proving representation 4

tic-tac-toe 18, 68
tip node 48, 53

Sacerdoti, Earl 90 
5 top-down reasoning 3 fr

SAINT 80-81, 82-83 totally dependent game tree 67
Samuel, A. 1. 58, 59,60 Tower of Hanoi puzzle 12-13, 17
search 1, 4 traveling-saleSman problem 1 • 11, 22, 34,
search graph 5 38, 39-40
search space 5-6, 31, 58 triangle table 86-87 - ;
secondary search 62
Shannon, C. E. 68, 59-62, 64
Shaw, 4. C. 7, 66, 60, 72 uniform game tree 56-58
Simon, H. A. 7, 8, 38, 66, 60, 72 uniform-cost search 22-23, 25, 33, 36, 42
SIN 81-83 unsolvable node 16, 28
SInt, L. 42
Slrovich, F. 48
Siagie, James 48, 64, 80 Wilkins, 0. 67 

5

Slate, 0. 4. 59, 63 world model 2, 84, 90
SOLDIER 82
solution 10
solution graph 15, 27
solution tt•S 16, 43-44, 46-4 7 


